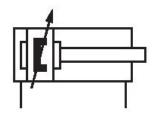
ISO 15552, series CCL-IS


R481609757

General series information

AVENTICS Series CCL-IS Standard cylinders (ISO 15552)

- The CCL-IS (Cylinder Clean Line ISO Standard) series cylinders complement the PRA series in the area of hygienic design and meet all requirements for use in the food sector. A special feature is the option to configure the air connections for supply and exhaust on just the base, which increases flexibility when designing the system's tubing concept..
- Optional: through piston rod, dry-run scraper, modular scraper system, lube unit, heat-resistant, especially high corrosion resistance, ATEX

Technical data

Industry Standards Type

Piston Ø Stroke Ports Functional principle Cushioning Magnetic piston Environmental requirements

Piston rod Cylinder special features Industrial ISO 15552 with front lube unit for constant lubrication of the piston rod 80 mm 80 mm G 3/8 Double-acting Pneumatic adjustable cushioning Piston with magnet Industry standard suitable for use in food processing High corrosion single Front Lube Unit

Scraper	Front Lube Unit
Pressure for determining piston forces	6,3 bar
Retracting piston force	2857 N
Extracting piston force	3167 N
Min. ambient temperature	-20 °C
Max. ambient temperature	80 °C
Working pressure min.	1.5 bar
Working pressure max	10 bar
Piston rod thread	M20x1,5
Cushioning length	19.5 mm
Cushioning energy	54 J
Weight 0 mm stroke	3.41 kg
Weight +10 mm stroke	0.081 kg
Stroke max.	2800 mm
Medium	Compressed air
Min. medium temperature	-20 °C
Max. medium temperature	80 °C
Max. particle size	50 µm
Oil content of compressed air min.	0 mg/m³
Oil content of compressed air max.	5 mg/m³

Material

Piston rod	Stainless Steel
Scraper material	Polyester
Material tie-rod	Stainless Steel
Material, front cover	Aluminum
Cylinder tube	Aluminum
End cover	Aluminum
Part No.	R481609757

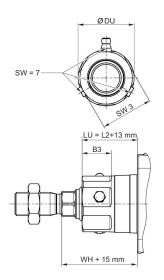
Technical information

Further options can be generated in the Internet configurator.

The following operating instructions can be found in the Media Center: R412019487

To maximize service life of the lube unit, refill the grease manually at recommended intervals.

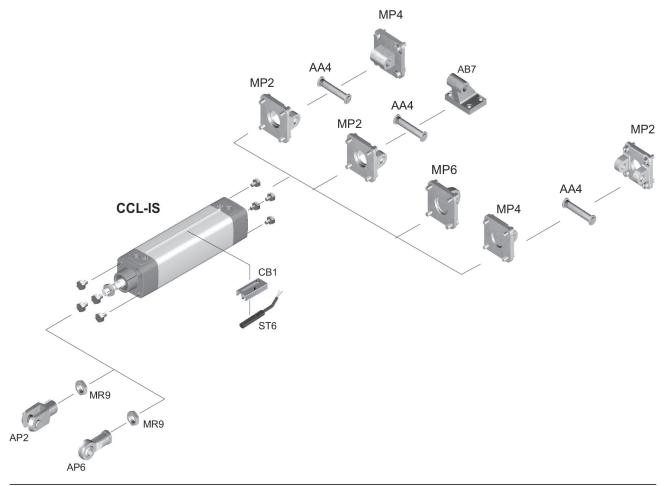
Normal ambient conditions: 2x/year


Weekly cleaning of cylinder/system: 1x/month

Daily cleaning of cylinder/system: 1x/week

The pressure dew point must be at least 15 °C less than ambient and medium temperature and may not exceed 3 °C.

Dimensions



Piston Ø	B3	Ø DU	LU	L2	SW3	WH
32	6	27.5	29.25	16.25	24	26 ±1.4
40	20	34	31.25	18.25	30	30 ±1.4
50	20	38.5	38	25	36	37 ±1.4
63	20	38.5	38	25	36	37 ±1.8
80	21	44	46	33	41	46 ±1.8
100	21	44	49	36	41	51 ±1.8
125	23	57	58	45	50	65 ± 2.2

Overview drawing

NOTE: This overview drawing is only for orientation to indicate where the various accessory parts can be fastened to the cylinder. The illustration has been simplified for this purpose. It is thus not possible to derive the dimensions from this overview.

