
R480163973

AVENTICS Series CKP Rodless cylinders

2024-03-19

AVENTICS Series CKP Rodless cylinders

The AVENTICS Series CKP cylinders provide sturdy, ultraprecise guiding with excellent repeatability and are ideal for applications requiring the movement of heavy loads in space-critical machine environments.

Technical data	
Industry	Industrial
Piston Ø	16 mm
Stroke	800 mm
Ports	M7
Functional principle	Double-acting
Magnetic piston	with magnetic piston
Guide	ball rail guide
Easy2Combine	Easy2Combine capable with electrical axes
Piston force	127 N
Pressure for determining piston forces	6,3 bar
Cushioning length	20 mm
Cushioning energy	1.5 J
Cushioning	Pneumatically
Cushioning	adjustable
Max. speed	2 m/s
Stroke max.	1400 mm
Min. working pressure	3 bar
Max. working pressure	8 bar
Min. ambient temperature	-10 °C

R480163973

		cylinders
Max. ambient temperature	60 °C	2024-03-19
Min. medium temperature	-10 °C	2024-03-19
Max. medium temperature	60 °C	
Medium	Compressed air	
Max. particle size	5 µm	
Weight	5.51 kg	
Material		
Material front cover	Aluminum	
Surface cover	anodized	
Seal material	Polyurethane	
Material sealing strips	Polyurethane	
	Stainless Steel	
Material guide rail	Aluminum	
Surface ball rail table	anodized	
Material guide rail	Steel, chrome-plated	
Surface guide rail	hardened	
Part No.	R480163973	

Technical information

The pressure dew point must be at least 15 °C less than ambient and medium temperature and may not exceed 3 °C.

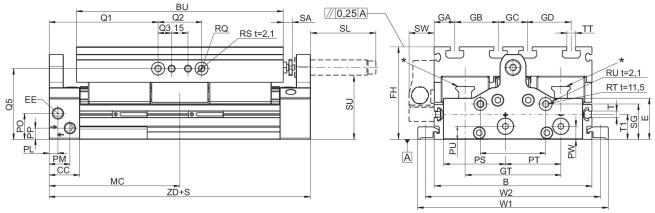
The delivered product is lubricated for lifetime.

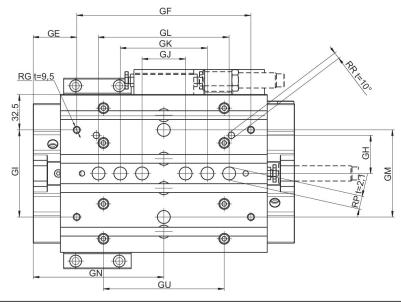
This product may only be operated with oil-free, dry compressed air.

The pressure dew point must be at least 15 °C less than ambient and medium temperature and may not exceed 3 °C.

The oil content of compressed air must remain constant during the life cycle.

Use only the approved oils from AVENTICS. Further information can be found in the "Technical information" document (available in https://www.emerson.com/en-us/support).



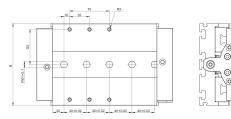

R480163973

Dimensions

2024-03-19

− t = depth * CKP 16: 2x Lube ports on each runner block, CKP 25 / 30: Lube nipple of funnel type with thread connection M3

Piston Ø	В	Ø RW t = depth of thread	RX t = depth of thread	GX		BU	СС	EE	FH
16	90	9 H7 t=2,1	M4 t=7,5	38	27.3	125	28	M7	56
25	110	9 H7 t=2,1	M5 t=9	46	31.4	155	28	G 1/8	66
32	145	12 H7 t=2,1	M6 t=13	62	37.8	190	28	G 1/8	85
Piston Ø	GA	GB	GC	GD	GN	GE	GF	GH	GI
16	15	20	20	20	93.5	38.5	110	20	40
25	25	20	20	20	107.5	47.5	120	42	80
32	19	40	27	40	120	40	160	35	80
Piston Ø	GJ	GK	GL	GM	GT	GU	MC	PL	PM
16	40	60	80	-	57	80	93.5	8	21



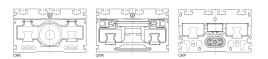
R480163973

		1	·						<u>cvlinders</u>
Piston Ø	GJ	GK	GL	GM	GT	GU	MC	PL	PM
25	40	60	80	-	66	106	107.5	8	20
32	40	80	120	80	88	111	120	8	19
Piston Ø	PO	PP	PS	PT	PU	PW	Q1	Q2	Q3
16	12.8	6.8	33	29.8	6.8	6	73.5	40	-
25	22	10.5	37.5	24	10.5	10.5	87.5	40	12.5
32	23.8	10.3	57	51	12	12	100	40	12.5
		,							
Piston Ø	RG	Ø RP	RQ t = depth of thread	ØRR	ØRS	RT	Ø RU	SG	SL
16	M5	9 F7	M5 t=10,5	4 F7	9 F7	M6	12 F7	20.3	43
25	M5	9 F7	M6 t=14,5	5 F7	12 F7	M6	12 F7	14	60
32	M6	12 F7	M6 t=14,5	6 F7	12 F7	M6	12 F7	32.5	60
Piston Ø	SU	SW	Т	TT	W1	W2	T1	ZD	SA
16	37	20	M4	N6	112	102	16	187	0–10
25	43	23	N6	N6	140	126	20	215	0–10
32	59	23	N6	N8	175	161	23	240	0–10

Piston Ø	Moving mass kg		
16	0.64		
25	1.11		
32	2.62		

Additional Easy2Combine interface on CKP-CL

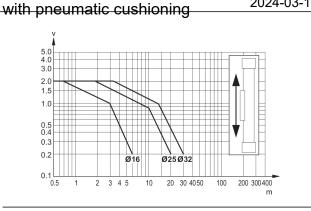
Permissible forces Fx, Fy, Fz and torques Mx, My, Mz


 $\frac{Mx}{Mx_{max.}} + \frac{My}{My_{max.}} + \frac{Mz}{Mz_{max.}} \le 1$

With simultaneously moments on the cylinder this equation must be used in addition to the maximum moments check. In the cushioning phase of the movement additional forces occur and must be considered. Please use our calculation tool for rodless cylinders on the http://www.aventics.com.

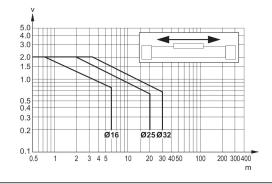
R480163973

CKP is part of the compact module family.

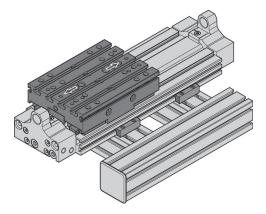

Further information can be found in the operating instructions.

Vertically mounted

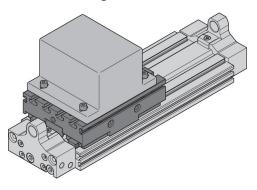
Series CKP Rodless cylinders


AVENTICS

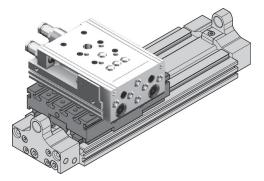
2024-03-19


vt = Piston velocity [m/s] m = Cushionable mass [kg]

Horizontally mounted with pneumatic cushioning

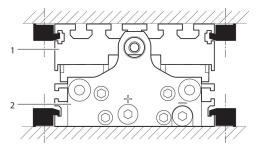


vt = Piston velocity [m/s] m = Cushionable mass [kg]

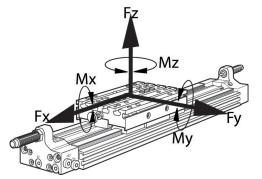

fastening of CKP on BME (Basic mechanical elements) profile construction via connection plates and clamping fixtures

fastening a customer attachment onto the CKP with T-groove nuts.

fastening of automation system Easy2Combine to CKP using center rings and T-groove nuts (example: mini slide MSC)



R480163973


AVENTICS Series CKP Rodless cylinders

2024-03-19

fastening of CKP to customer-built mounting base via clamping fixtures

Permissible forces Fx, Fy, Fz and torques Mx, My, Mz

With simultaneously moments on the cylinder this equation must be used in addition to the maximum moments check. In the cushioning phase of the movement additional forces occur and must be considered. Please use our calculation tool for rodless cylinders on the http://www.aventics.com.

Max. dynamic forces and torques

Piston Ø	Fx [N]	Fy [N]	Fz [N]	Mx [Nm]	My [Nm]	Mz [Nm]
16	2912	2912	2912	83	116	143
25	3280	3280	8568	283	454	205
32	5280	5280	15620	687	867	374

Recommended values for an expected lifetime of 3200 km

