
AVENTICS Series EBS Ejectors

The AVENTICS Series EBS ejectors are the convincing and talented multi-taskers within the AVENTICS ejector Series. Parallel to the main advantages of this ejector Series, these ejectors offer additional benefits due to their enormous versatility.

Industrial
Electrically
push-in fitting
Ejector
electrical control, T-design
with silencer
0.5 mm
3 bar
6 bar
0°C
50 °C
0°C
50 °C
Compressed air
0 mg/m³
1 mg/m³
5 µm
Ø 4
Ø 4

R412007461

Max. suction capacity	7.5 l/min
Air consumption at p.opt.	14 I/min
Max. vacuum level at p.opt	84 %
	53 dB
Sound pressure level intake effect	
Sound pressure level intake effect	58 dB
release valve	release valve
Display	LED
Protection class according to EN 60529:2000,	IP40
without electrical connector	
Operational voltage DC	24 V
Voltage tolerance DC	- 5% / +10%
Power consumption solenoid valve	1.3 W
Weight	0.035 kg
Housing material	Polyamide fiber-glass reinforced
Seal material	Acrylonitrile butadiene rubber
Nozzle material	Aluminum
Material release ring	Polyamide
Silencer material	Polyethylene
Part No.	R412007461

Technical information

Note: All data refers to an ambient pressure of [[1,013] bar] and an ambient temperature of [[20]°C]. The pressure dew point must be at least 15 °C less than ambient and medium temperature and may not exceed 3 °C.

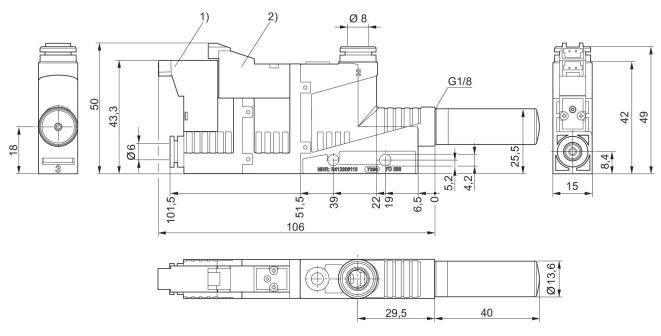
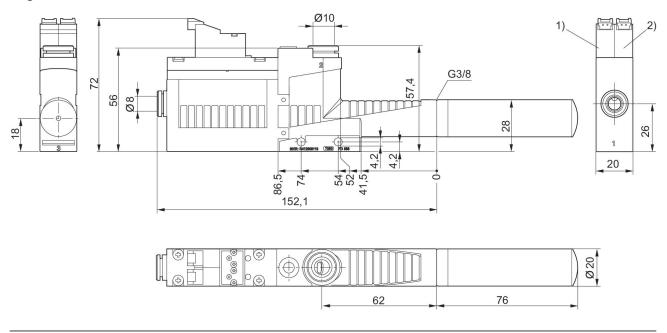

R412007461

Fig. 1

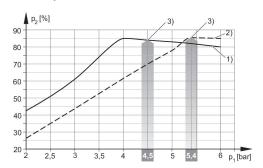
Solenoid valve for vacuum ON/OFF
Release valve from memory

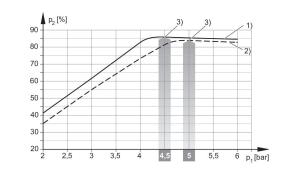
Fig. 2


1) Solenoid valve for vacuum ON/OFF

2) Solenoid valve for release pulse

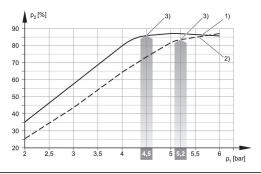
R412007461


Fig. 3

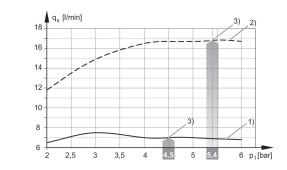

1) Solenoid valve for vacuum ON/OFF

2) Solenoid valve for release pulse

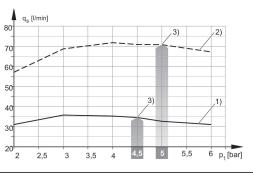
Vacuum p2 depending on working pressure p1


1) = \emptyset nozzle 0.5 mm 2) = \emptyset nozzle 0.7 mm 3) optimum working pressure

1) = Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm 3) optimum working pressure

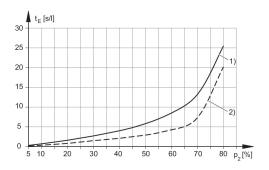


R412007461

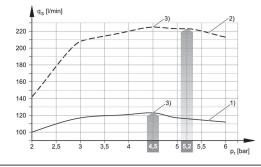


1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm 3) optimum working pressure

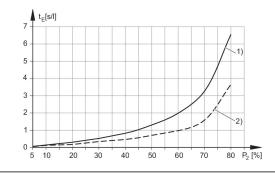
Suction capacity qs depending on working pressure p1



1) = \emptyset nozzle 0.5 mm 2) = \emptyset nozzle 0.7 mm 3) optimum working pressure

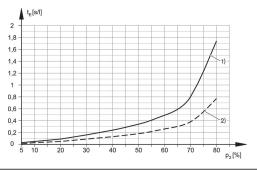


1) = \emptyset nozzle 1.0 mm 2) = \emptyset nozzle 1.5 mm 3) optimum working pressure


Evacuation time tE depending on vacuum p2 for 1 I volume (with optimal operating pressure p1opt)



1) = Ø nozzle 0.5 mm 2) = Ø nozzle 0.7 mm


1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm
3) optimum working pressure

R412007461

3)

1)

6 p, [bar]

3)

4

4,5 5 5,5

1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm

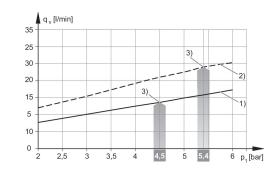
q _s [l/min]

160

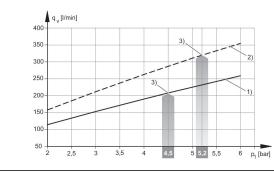
140

120

100


80

60


40 20

0

Air consumption qv depending on working pressure p1

1) = Ø nozzle 0.5 mm 2) = Ø nozzle 0.7 mm 3) optimum working pressure

1) = Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm

3,5

2,5

3) optimum working pressure

1) = \emptyset nozzle 2.0 mm 2) = \emptyset nozzle 2.5 mm 3) optimum working pressure

