
AVENTICS Series EBS Ejectors

The AVENTICS Series EBS ejectors are the convincing and talented multi-taskers within the AVENTICS ejector Series. Parallel to the main advantages of this ejector Series, these ejectors offer additional benefits due to their enormous versatility.

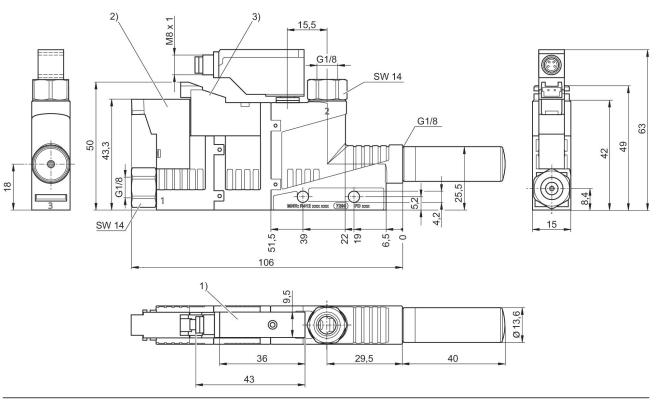
Industry Activation Note Type Version with silencer Nozzle Ø vacuum switch Min. working pressure Max. working pressure Min. ambient temperature Max. ambient temperature Min. medium temperature Max. medium temperature Medium Min. oil content of compressed air Max. oil content of compressed air Max. particle size Compressed air connection

Technical data

Industrial Electrically Thread connection Ejector electrical control, T-design with silencer 0.5 mm electronic adjustable 3 bar 6 bar 0°C 50 °C 0°C 50 °C Compressed air 0 mg/m³ 1 mg/m³ 5 µm M5

R412010176

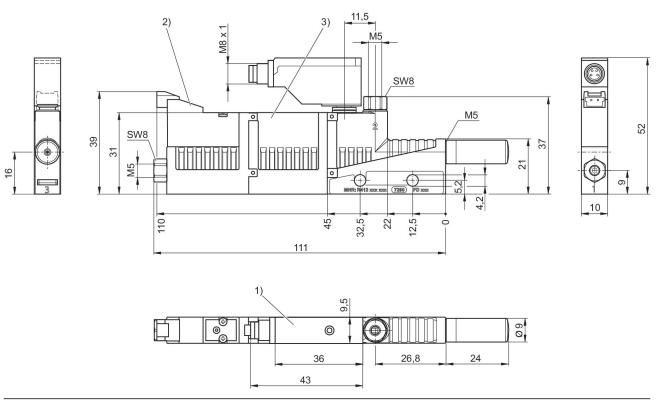
Vacuum connection+	М5
Max. suction capacity	7.5 l/min
	14 l/min
Air consumption at p.opt.	
Max. vacuum level at p.opt	84 %
Sound pressure level intake effect	53 dB
Sound pressure level intake effect	58 dB
Protection against overpressure (max.)	5 bar
release valve	release valve
Protection class	IP40
Duty cycle according to DIN VDE 0580 standard	100 %
Operational voltage DC	24 V
Hysteresis	2% of the final value, fixed
Precision (% of full scale value)	± 3 %
Repeatability (% of full scale value)	±1%
Voltage tolerance DC	- 5% / +10%
Power consumption solenoid valve	1.3 W
Switching point	adjustable 0 100%
Weight	0.0415 kg
Housing material	Polyamide fiber-glass reinforced
Seal material	Acrylonitrile butadiene rubber
Nozzle material	Aluminum
Silencer material	Polyethylene
Material pressure sensor	Polycarbonate
Part No.	R412010176


Technical information

Note: All data refers to an ambient pressure of [[1,013] bar] and an ambient temperature of [[20]°C]. The pressure dew point must be at least 15 °C less than ambient and medium temperature and may not exceed 3 °C.

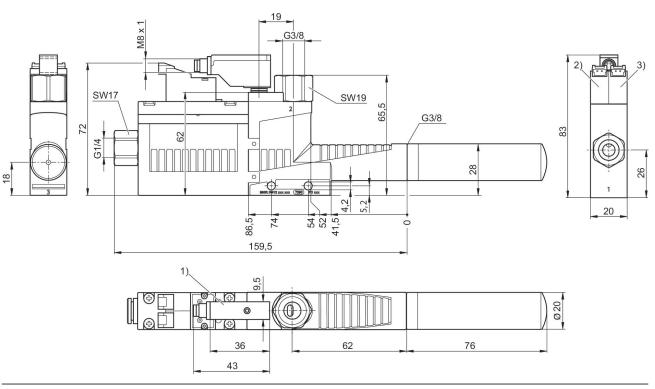
R412010176

Fig. 2



vacuum switch is rotatable and exchangeable
Solenoid valve for vacuum ON/OFF
Solenoid valve for release pulse

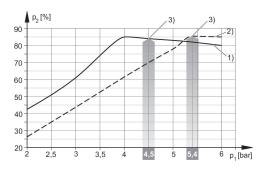
R412010176


1) vacuum switch is rotatable and exchangeable

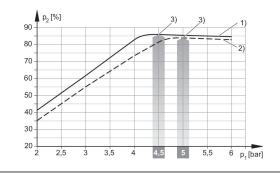
2) Solenoid valve for vacuum ON/OFF3) Release valve from memory

R412010176

Fig. 3



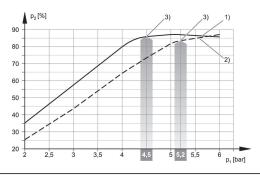
1) vacuum switch is rotatable and exchangeable


2) Solenoid valve for vacuum ON/OFF

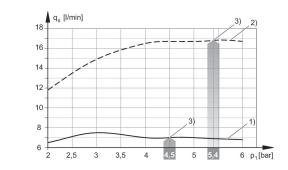
3) Solenoid valve for release pulse

Vacuum p2 depending on working pressure p1

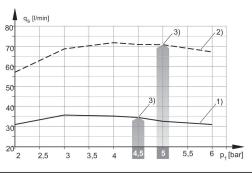
1) = Ø nozzle 0.5 mm 2) = Ø nozzle 0.7 mm 3) optimum working pressure



1) = Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm 3) optimum working pressure

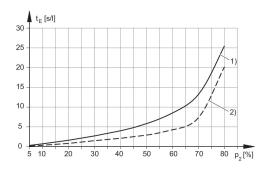


R412010176

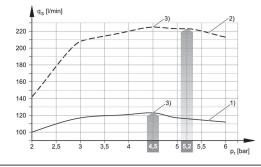


1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm 3) optimum working pressure

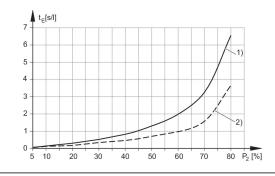
Suction capacity qs depending on working pressure p1



1) = \emptyset nozzle 0.5 mm 2) = \emptyset nozzle 0.7 mm 3) optimum working pressure

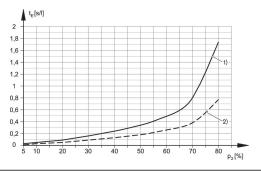


1) = \emptyset nozzle 1.0 mm 2) = \emptyset nozzle 1.5 mm 3) optimum working pressure

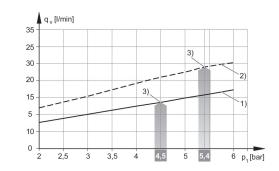

Evacuation time tE depending on vacuum p2 for 1 l volume (with optimal operating pressure p1opt)

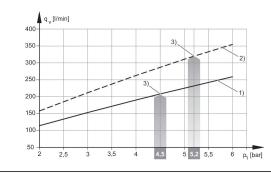


1) = Ø nozzle 0.5 mm 2) = Ø nozzle 0.7 mm

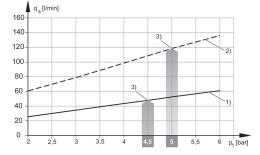


1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm
3) optimum working pressure





1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm


Air consumption qv depending on working pressure p1

1) = Ø nozzle 0.5 mm 2) = Ø nozzle 0.7 mm 3) optimum working pressure

1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm 3) optimum working pressure

1) = Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm

3) optimum working pressure

