
R412010172

AVENTICS Series EBS Ejectors

The AVENTICS Series EBS ejectors are the convincing and talented multi-taskers within the AVENTICS ejector Series. Parallel to the main advantages of this ejector Series, these ejectors offer additional benefits due to their enormous versatility.

Technical data

Industry Industrial
Activation Electrically
Note push-in fitting

Type Ejector

Version electrical control, T-design

with silencer with silencer

 $\begin{array}{ccc} \operatorname{Nozzle} \varnothing & & 2 \operatorname{mm} \\ \operatorname{vacuum} \operatorname{switch} & & \operatorname{electronic} \\ & & \operatorname{adjustable} \end{array}$

Min. working pressure 3 bar
Max. working pressure 6 bar
Min. ambient temperature 0 °C

Max. ambient temperature 50 °C
Min. medium temperature 0 °C
Max. medium temperature 50 °C

Medium Compressed air

Min. oil content of compressed air 0 mg/m^3 Max. oil content of compressed air 1 mg/m^3 Max. particle size $5 \mu \text{m}$ Compressed air connection \emptyset 8

R412010172

Vacuum connection+ Ø 8

Max. suction capacity 123 l/min

Air consumption at p.opt. 208 l/min

Max. vacuum level at p.opt 86 %

Sound pressure level intake effect 68 dB

Sound pressure level intake effect 77 dB

Protection against overpressure (max.) 5 bar

release valve release valve

Protection class IP40
Duty cycle according to DIN VDE 0580 standard 100 %
Operational voltage DC 24 V

Hysteresis 2% of the final value, fixed

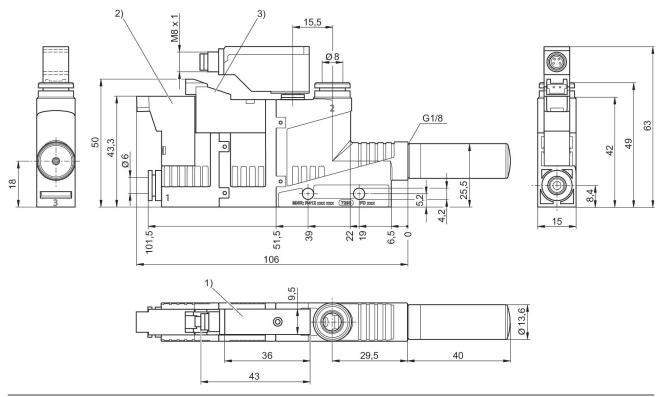
Precision (% of full scale value) ± 3 % Repeatability (% of full scale value) ± 1 %

Voltage tolerance DC - 5% / +10%

Power consumption solenoid valve 1.3 W

Switching point adjustable 0 ... 100%

Weight 0.154 kg


Housing material Polyamide fiber-glass reinforced Seal material Acrylonitrile butadiene rubber

Nozzle material Aluminum
Silencer material Polyethylene
Material pressure sensor Polycarbonate
Part No. R412010172

Technical information

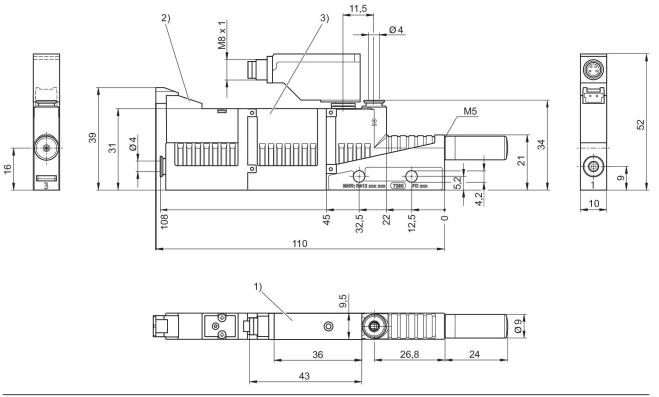

Note: All data refers to an ambient pressure of [[1,013] bar] and an ambient temperature of [[20]°C]. The pressure dew point must be at least 15 °C less than ambient and medium temperature and may not exceed 3 °C.

Fig. 2

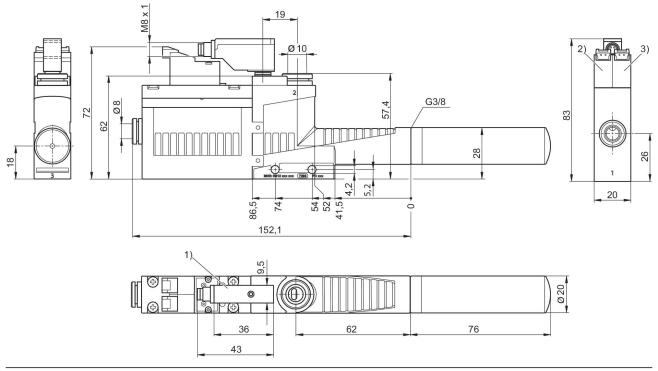
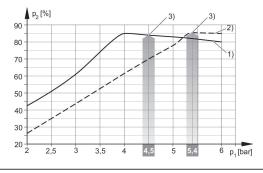
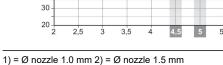

vacuum switch is rotatable and exchangeable
 Solenoid valve for vacuum ON/OFF
 Solenoid valve for release pulse

Fig. 1


vacuum switch is rotatable and exchangeable
 Solenoid valve for vacuum ON/OFF
 Release valve from memory


Fig. 3

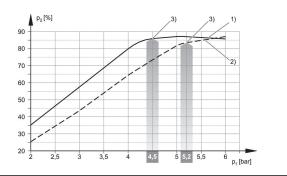
- vacuum switch is rotatable and exchangeable
 Solenoid valve for vacuum ON/OFF
- 3) Solenoid valve for release pulse

Vacuum p2 depending on working pressure p1

80 70

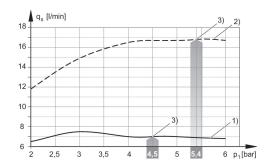
60

50

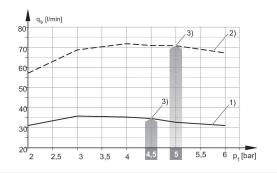

40

3) optimum working pressure

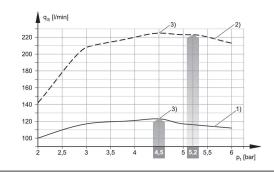
- 1) = Ø nozzle 0.5 mm 2) = Ø nozzle 0.7 mm 3) optimum working pressure


6 p₁[bar]

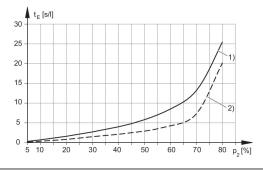
R412010172



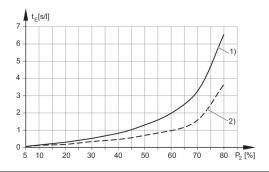
- 1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm
- 3) optimum working pressure


Suction capacity qs depending on working pressure p1

- 1) = Ø nozzle 0.5 mm 2) = Ø nozzle 0.7 mm
- 3) optimum working pressure

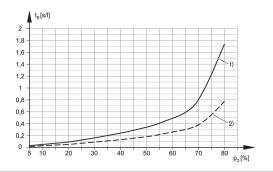


- 1) = \emptyset nozzle 1.0 mm 2) = \emptyset nozzle 1.5 mm
- 3) optimum working pressure

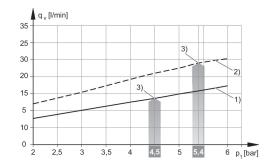


- 1) = \emptyset nozzle 2.0 mm 2) = \emptyset nozzle 2.5 mm
- 3) optimum working pressure

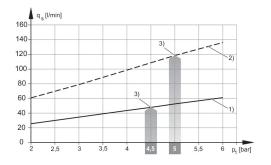
Evacuation time tE depending on vacuum p2 for 1 I volume (with optimal operating pressure p1opt)



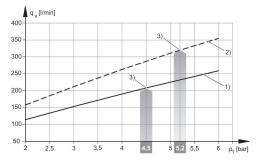
1) = \emptyset nozzle 0.5 mm 2) = \emptyset nozzle 0.7 mm


1) = Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm

R412010172



1) = \emptyset nozzle 2.0 mm 2) = \emptyset nozzle 2.5 mm


Air consumption qv depending on working pressure p1

- 1) = \emptyset nozzle 0.5 mm 2) = \emptyset nozzle 0.7 mm
- 3) optimum working pressure

- 1) = Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm
- 3) optimum working pressure

- 1) = \emptyset nozzle 2.0 mm 2) = \emptyset nozzle 2.5 mm 3) optimum working pressure