
### **Ejector, Series EBS**

R412007449

#### **AVENTICS Series EBS Ejectors**

The AVENTICS Series EBS ejectors are the convincing and talented multi-taskers within the AVENTICS ejector Series. Parallel to the main advantages of this ejector Series, these ejectors offer additional benefits due to their enormous versatility.





#### Technical data

Industry Industrial
Activation Pneumatically
Note push-in fitting
Type Ejector

Version pneumatic control, T-design

with silencer

Nozzle Ø

0.5 mm

Min. working pressure

Max. working pressure

6 bar

Min. ambient temperature 0 °C

Max. ambient temperature 60 °C

Min. medium temperature 0 °C

Max. medium temperature 60 °C

Medium Compressed air

 $\begin{array}{lll} \mbox{Min. oil content of compressed air} & 0 \mbox{ mg/m}^{3} \\ \mbox{Max. oil content of compressed air} & 1 \mbox{ mg/m}^{3} \\ \mbox{Max. particle size} & 5 \mbox{ } \mu m \\ \mbox{Compressed air connection} & \varnothing \ 4 \\ \mbox{Vacuum connection+} & \varnothing \ 4 \\ \end{array}$ 



### **Ejector, Series EBS**

R412007449

| Max. suction capacity              | 7 l/min  |
|------------------------------------|----------|
| Air consumption at p.opt.          | 14 l/min |
| Max. vacuum level at p.opt         | 84 %     |
| Sound pressure level intake effect | 53 dB    |
| Sound pressure level intake effect | 58 dB    |
| Weight                             | 0.007 kg |
|                                    |          |

Housing material Polyamide fiber-glass reinforced Seal material Acrylonitrile butadiene rubber

Nozzle material Aluminum

Material release ring Polyamide

Silencer material Polyethylene

Part No. R412007449

#### **Technical information**

Note: All data refers to an ambient pressure of [[1,013] bar] and an ambient temperature of [[20]°C]. The pressure dew point must be at least 15 °C less than ambient and medium temperature and may not exceed 3 °C.

Fig. 3

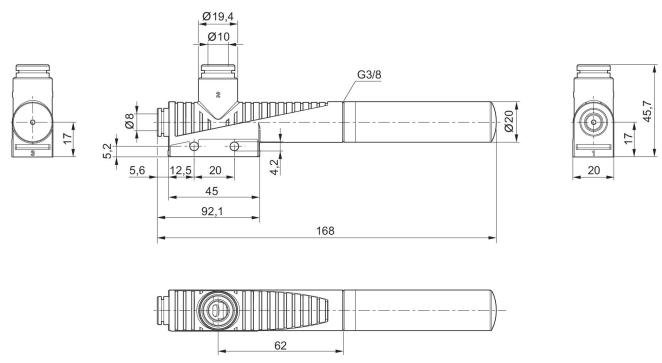
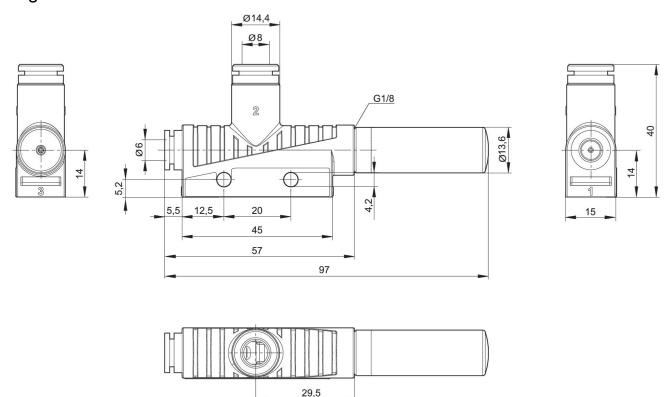
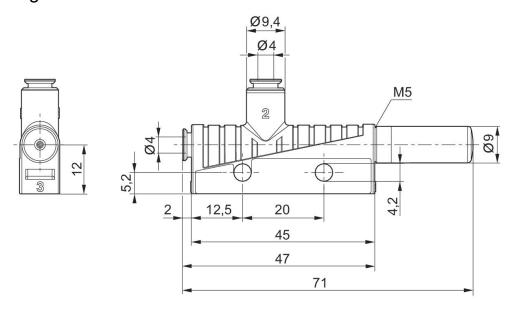
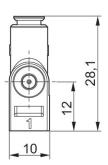
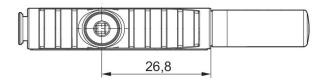
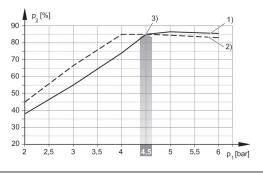
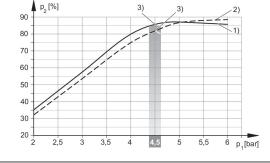



Fig. 2

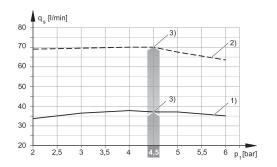






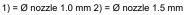


Fig. 1



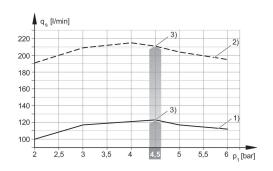




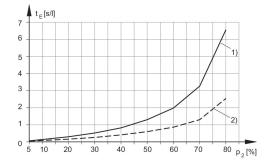



<sup>1) =</sup> Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm 3) optimum working pressure

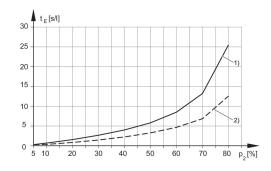

<sup>1) =</sup> Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm 3) optimum working pressure

R412007449

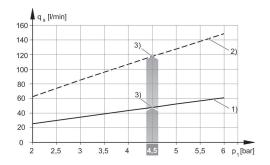




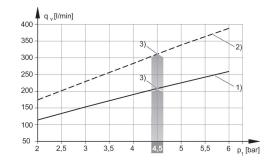

<sup>3)</sup> optimum working pressure




<sup>1) =</sup> Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm




1) = Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm


# Evacuation time tE depending on vacuum p2 for 1 l volume (with optimal operating pressure p1opt)

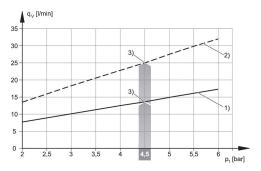


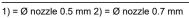
1) = Ø nozzle 0.5 mm 2) = Ø nozzle 0.7 mm



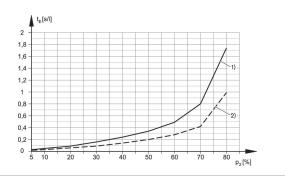
<sup>1) =</sup> Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm




- 1) =  $\emptyset$  nozzle 2.0 mm 2) =  $\emptyset$  nozzle 2.5 mm
- 3) optimum working pressure

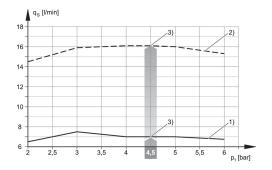

<sup>3)</sup> optimum working pressure

<sup>3)</sup> optimum working pressure


R412007449

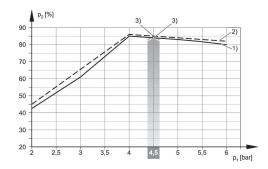
# Air consumption qv depending on working pressure p1






<sup>3)</sup> optimum working pressure




1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm

# Suction capacity qs depending on working pressure p1



<sup>1) =</sup>  $\emptyset$  nozzle 0.5 mm 2) =  $\emptyset$  nozzle 0.7 mm

### Vacuum p2 depending on working pressure p1



<sup>1) =</sup>  $\emptyset$  nozzle 0.5 mm 2) =  $\emptyset$  nozzle 0.7 mm

<sup>3)</sup> optimum working pressure

<sup>3)</sup> optimum working pressure