
E/P pressure regulator, Series EV12

R414011402

General series information Series EV12

■ The AVENTICS EV12 high flow proportional pressure control valve with its compact design hides its large flow capacity. It can be used as a stand-alone solution (high flow valve), as a battery for block assembly with consistently controlled pressure, or integrated into a maintenance unit.

Technical data

Type Continuous pressure supply

Display: display
ontrol Externally pilote

Control Externally piloted

Air supply through Regulation range min. 0 bar Regulation range max. 10 bar

Working pressure min. 0 bar
Working pressure max 10 bar
Hysteresis < 0,12 bar

< 0,12 bar

Nominal flow Qn 6500 l/min

Min. ambient temperature 0 °C

Max. ambient temperature	50 °C
Min. medium temperature	0 °C
Max. medium temperature	50 °C
DC operating voltage	24 V
Permissible ripple	5%
Max. current consumption	220 mA
Max. particle size	50 µm
Oil content of compressed air min.	0 mg/m³
Oil content of compressed air max.	5 mg/m³
Frame size	AS3

Type Poppet valve

Compressed air connection input G 3/8 Compressed air connection output G 3/8 M12 Electrical connection size Electrical connection number of poles 5-pin A-coded Electrical connection coding 0 ... 10 V Actual output value 0 ... 10 V Nominal input value Industrial Industry Weight 1.4 kg

Material

Housing material Polyamide

Seal material Nitrile butadiene rubber

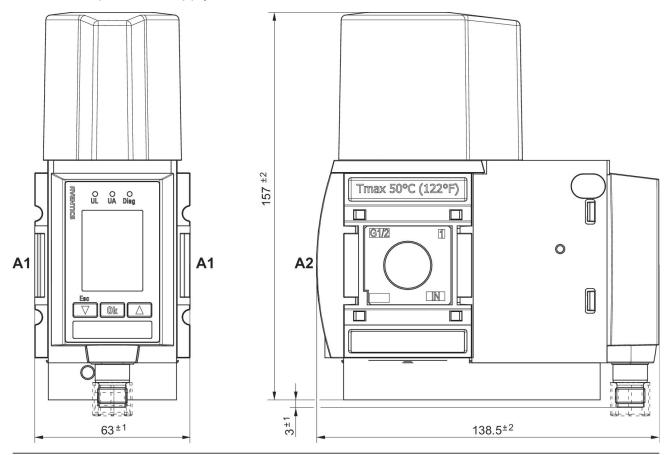
Material base plate Aluminum
Part No. R414011402

Technical information

Power outage: maintain pressure

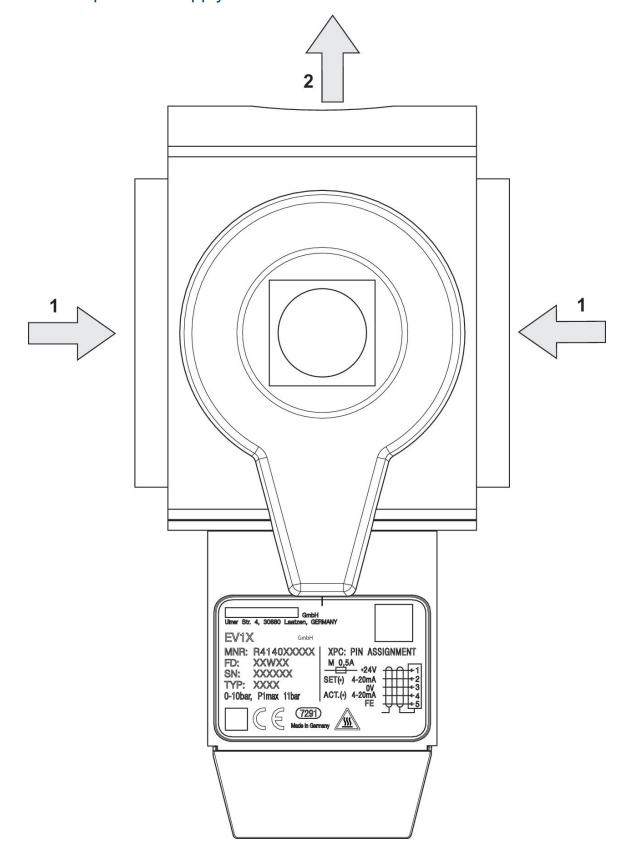
The min. control pressure must be adhered to, since otherwise faulty switching and valve failure may result!

The pressure dew point must be at least 15 °C less than ambient and medium temperature and may not exceed 3 °C.

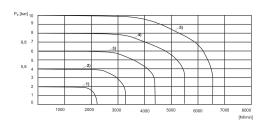

The oil content of compressed air must remain constant during the life cycle.

Use only the approved oils from AVENTICS. Further information can be found in the "Technical information" document (available in https://www.emerson.com/en-us/support).

Dimensions

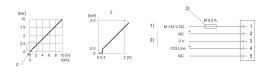

Continuous pressure supply

A1 = input A2 = output



Continuous pressure supply

Flow characteristic curve

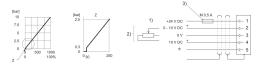

1) Pv = [[3] bar] 2)Pv = [[5] bar] 3)Pv = [[7] bar] 4) Pv = [[9] bar] 5)Pv = [[11] bar]

Pv = Supply pressure

Pa = Working pressure

Pv = Pa + 1

Characteristic curve and plug assignment for IO-Link version

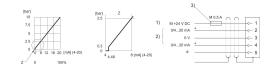

1) power supply

2) C/Q Line (pin 4) Not connected (NC) (pin 2) are related to 0 V (pin 3).

3) The power supply must be protected by an external M 0.5 A fuse.

Connect the plug via a shielded cable to ensure EMC.

Characteristic and pin assignment for voltage control with actual output value

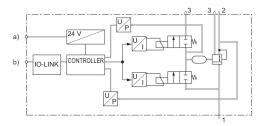


1) power supply

2) Actual value (pin 4) and nominal value (pin 2) are related to 0 V (pin 3). Nominal input value (R = 1 M Ω), actual output value: min. load resistance > 10 K Ω . If the power supply is switched off, the nominal input value is high-ohmic.

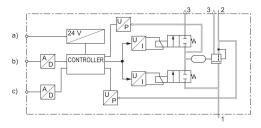
3) The power supply must be protected by an external M $0.5~{\rm A}$ fuse. Connect the plug via a shielded cable to ensure EMC.

Characteristic and pin assignment for current control with actual output value



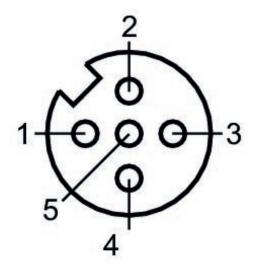
1) power supply

2) Actual value (pin 4) and nominal value (pin 2) are related to 0 V (pin 3). Nominal input value (ohmic load 100 Ω), actual output value: external ohmic load < 300 Ω . If the power supply is switched off, the nominal input value is high-ohmic.


3) The power supply must be protected by an external M 0.5 A fuse. Connect the plug via a shielded cable to ensure EMC.

Functional diagram IO-Link

- a) Supply Voltage
- b) C/Q Line


Functional diagram

- a) Voltage supply b) Nominal value
- c) Actual output value

Plug assignment

- 1) 24 V DC 2) Nominal input value 3) GND 4) Actual output value 5) Ground

