
3/2-shut-off valve, mechanically operated, Series NL1-BAV

0821300773

Technical data

Industry Industrial Activation

Mechanical

Nominal flow Qn

3000 l/min

Compressed air connection

G 1/4

Working pressure min.

0 bar

Working pressure max

16 bar

Actuating element

rotary switch

Sealing principle metal/metal sealing

Certificates

suitable for ATEX

ATEX

suitable for ATEX

Type Ball Valve

Parts

Shut-off valve

Lock type lockable

Lock type for padlocks

Min. ambient temperature

-10 °C

Max. ambient temperature

60 °C

Min. medium temperature

-10 °C

Max. medium temperature

60 °C

Medium Compressed air Neutral gases

Compressed air connection, exhaust

G 1/4

Nominal flow Qn 1 to 2

1800 l/min

Nominal flow Qn 2 to 3

70 l/min Weight 0.246 kg

Housing material

Die cast zinc

Seal material

Acrylonitrile butadiene rubber Material actuating control

Polyoxymethylene

Part No. 0821300773

Technical information

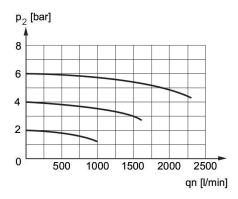
The pressure dew point must be at least 15 $^{\circ}$ C under ambient and medium temperature and may not exceed 3 $^{\circ}$ C .

Suitable for use in Ex zones 1, 2, 21, 22.

A change in the flow direction (from air supply on the left to air supply on the right) occurs by rotating installation by 180° about the vertical axis. Please see the operating instructions for further details.

Dimensions

A1 = input A2 = output A3 = ventilation port


Dimensions in mm

Part No.	A1	A2	A3		С	D			G
0821300772	G 1/8	G 1/8	G 1/4	40	37.6	20	57.6	8	33.5
0821300773	G 1/4	G 1/4	G 1/4	40	37.6	20	57.6	8	33.5

Part No.		Т3	Z
0821300772	40	10	6.5
0821300773	40	10	6.5

Flow rate characteristic, p2 = 0,05 - 7 bar

p2 = secondary pressure qn = nominal flow

