

AFM60B-S1PA000S01

AFS/AFM60 SSI

ABSOLUTE ENCODERS

Ordering information

Туре	Part no.
AFM60B-S1PA000S01	1129608

Other models and accessories → www.sick.com/AFS_AFM60_SSI

Illustration may differ

Detailed technical data

Features

Special device	J
Specialty	ATM60-A1A0-K25 successor: Max. resolution: 12 bit x 12 bit (4,096 x 4,096) Positioning 70,000
Standard reference device	AFM60B-S1PA032768, 1037513

Performance

Number of steps per revolution (max. resolution)	4,096 (12 bit)
Number of revolutions	4,096 (12 bit)
Max. resolution (number of steps per revolution x number of revolutions)	12 bit x 12 bit (4,096 x 4,096)
Error limits G	0.05° ¹⁾
Repeatability standard deviation $\boldsymbol{\sigma_{r}}$	0.002° ²⁾

¹⁾ In accordance with DIN ISO 1319-1, position of the upper and lower error limit depends on the installation situation, specified value refers to a symmetrical position, i.e. deviation in upper and lower direction is the same.

Interfaces

Communication interface	SSI
Initialization time	50 ms ¹⁾
Position forming time	< 1 µs
Code type	Gray
Code sequence parameter adjustable	CW/CCW (V/R) parameter adjustable
Clock frequency	≤ 2 MHz ²⁾
Set (electronic adjustment)	H-active (L = $0 - 3 \text{ V}$, H = $4,0 - U_s \text{ V}$)

 $^{^{1)}}$ Valid positional data can be read once this time has elapsed.

 $^{^{2)}}$ In accordance with DIN ISO 55350-13; 68.3% of the measured values are inside the specified area.

²⁾ Minimum, LOW level (Clock +): 250 ns.

CW/CCW (counting	sequence	when	turn-
ing)			

L-active (L = 0 - 1.5 V, H = 2.0 - Us V)

Electrical data

Connection type	Male connector, M23, 12-pin, radial
Supply voltage	4.5 32 V DC
Power consumption	≤ 0.7 W (without load)
Reverse polarity protection	✓
MTTFd: mean time to dangerous failure	250 years (EN ISO 13849-1) ¹⁾

¹⁾ This product is a standard product and does not constitute a safety component as defined in the Machinery Directive. Calculation based on nominal load of components, average ambient temperature 40°C, frequency of use 8760 h/a. All electronic failures are considered hazardous. For more information, see document no. 8015532.

Mechanical data

Mechanical design	Solid shaft, Servo flange
Shaft diameter	6 mm
Shaft length	10 mm
Weight	0.3 kg ¹⁾
Shaft material	Stainless steel
Flange material	Aluminum
Housing material	Aluminum die cast
Start up torque	< 0.5 Ncm (+20 °C)
Operating torque	< 0.3 Ncm (+20 °C)
Permissible shaft loading	80 N (radial) 40 N (axial)
Operating speed	≤ 9,000 min ^{-1 2)}
Moment of inertia of the rotor	6.2 gcm ²
Bearing lifetime	3.0 x 10^9 revolutions
Angular acceleration	≤ 500,000 rad/s²

¹⁾ Based on devices with male connector.

Ambient data

EMC	According to EN 61000-6-2 and EN 61000-6-3 ¹⁾
Enclosure rating	IP65, shaft side (IEC 60529) IP67, housing side (IEC 60529) ²⁾
Permissible relative humidity	90 % (Condensation not permitted)
Operating temperature range	-40 °C +100 °C ³⁾
Storage temperature range	-40 °C +100 °C, without package
Resistance to shocks	70 g, 6 ms (EN 60068-2-27)

¹⁾ EMC according to the standards quoted is achieved if shielded cables are used.

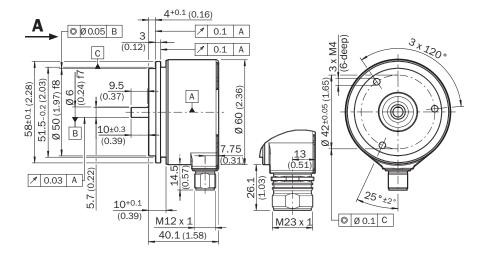
 $^{^{1)}}$ Valid positional data can be read once this time has elapsed.

 $^{^{2)}}$ Minimum, LOW level (Clock +): 250 ns.

 $^{^{2)}}$ Allow for self-heating of 3.3 K per 1,000 rpm when designing the operating temperature range.

 $^{^{\}rm 2)}$ For devices with male connector: with mounted mating connector.

³⁾ Stationary position of the cable.

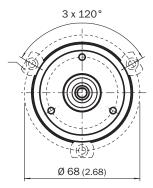

Resistance to vibration

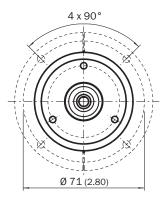
30 g, 10 Hz ... 2,000 Hz (EN 60068-2-6)

Classifications

ECLASS 5.0	27270502
ECLASS 5.1.4	27270502
ECLASS 6.0	27270590
ECLASS 6.2	27270590
ECLASS 7.0	27270502
ECLASS 8.0	27270502
ECLASS 8.1	27270502
ECLASS 9.0	27270502
ECLASS 10.0	27270502
ECLASS 11.0	27270502
ECLASS 12.0	27270502
ETIM 5.0	EC001486
ETIM 6.0	EC001486
ETIM 7.0	EC001486
ETIM 8.0	EC001486
UNSPSC 16.0901	41112113

Dimensional drawing (Dimensions in mm (inch))




 $^{^{1)}\,\}mathrm{EMC}$ according to the standards quoted is achieved if shielded cables are used.

 $^{^{\}rm 2)}$ For devices with male connector: with mounted mating connector.

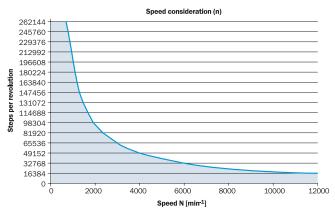
³⁾ Stationary position of the cable.

Attachment specifications

PIN assignment

M23 male connector, 12-pin, SSI/Gray

View of M23 male device connector on encoder


PIN	Signal	Explanation
1	GND	Ground connection
2	Data +	Interface signals
3	Clock +	Interface signals
4	N.C.	Not assigned
5	N.C.	Not assigned
6	N.C.	Not assigned
7	N.C.	Not assigned
8	U_{S}	Operating voltage
9	SET	Electronic adjustment
10	Data -	Interface signals
11	Clock -	Interface signals
12	V/R	Sequence in direction of rotation

AFM60B-S1PA000S01 | AFS/AFM60 SSI

ABSOLUTE ENCODERS

PIN	Signal	Explanation
	Screen	Screen connected to housing on encoder side. Connected to ground on control side.

Diagrams

The maximum speed is also dependent on the shaft type.

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations -www.sick.com

