

SFS60S-HRKT0K02

SFS/SFM60

MOTOR FEEDBACK SYSTEMS

Ordering information

Туре	Part no.
SFS60S-HRKT0K02	1081504

M3 mounting screws for stator coupling not included with delivery.

Other models and accessories → www.sick.com/SFS_SFM60

Illustration may differ

Detailed technical data

Features

Items supplied	M3 mounting screws for stator coupling not included with delivery.

Safety-related parameters

Safety integrity level	SIL 2 (IEC 61508), SILCL2 (EN 62061) ¹⁾
Category	3 (EN ISO 13849)
Test rate	Not required
Maximum demand rate	Continuous (analog signals)
Performance level	PL d (EN ISO 13849) ²⁾
PFH _D : Probability of dangerous failure per hour	1.7 x 10 ^{-8 2)}
T _M (mission time)	20 years (EN ISO 13849)
Safety-related accuracy	\pm 0.09°, For square counting $^{3)}$
Safety-related measuring step	0.09°, For square counting

¹⁾ For more detailed information on the exact configuration of your machine/unit, please consult your relevant SICK branch office.

Performance

Sine/cosine periods per revolution	1,024
Number of the absolute ascertainable revolutions	1
Total number of steps	32,768
Measuring step	$0.3{\rm ''}$ For interpolation of the sine/cosine signals with, e. g., 12 bits
Integral non-linearity	Typ. \pm 45 $^{\prime\prime}$, Error limits for evaluating sine/cosine period, without mechanical tension of the stator coupling
Differential non-linearity	± 7 ", Non-linearity within a sine/cosine period
Operating speed	\leq 6,000 min ⁻¹ , up to which the absolute position can be reliably produced
Available memory area	1,792 Byte
System accuracy	± 52 "

²⁾ The enclosure rating (in accordance with IEC 60529) is achieved with attached mating connector and was tested with the shaft in a horizontal position.

³⁾ The values displayed apply to a diagnostic degree of coverage of 90%, which must be achieved by the external drive system. In the event of resonance, suitable tests have to be carried out on the entire drive system.

Interfaces

Type of code for the absolute value	Binary
Code sequence	Rising, For clockwise shaft rotation, looking in direction "A" (see dimensional drawing)
Communication interface	HIPERFACE [®]

Electrical data

Connection type	Cable, 8-wire (4 x 2 x 0.15 mm²), radial, 1.5 m		
Supply voltage	7 V DC 12 V DC		
Recommended supply voltage	8 V DC		
Current consumption	< 80 mA (without load)		
Output frequency for sine/cosine signals	≤ 200 kHz		

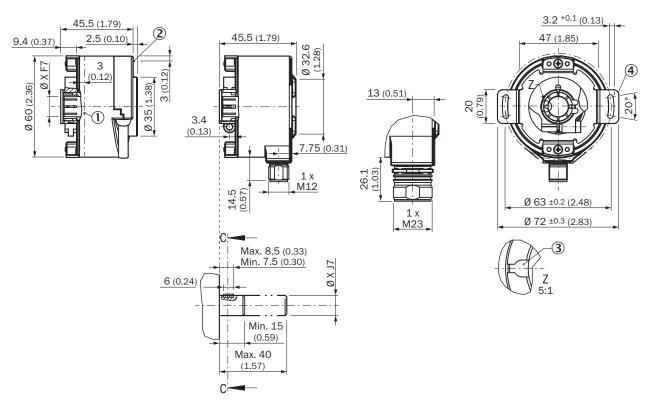
Mechanical data

Shaft version	Through hollow shaft
Shaft diameter	14 mm
Shaft material	Stainless steel
Flange material	Zinc diecast
Housing material	Aluminum die cast
Flange type / stator coupling	Stator coupling (BEF-DS07XFX)
Dimensions	See dimensional drawing
Weight	≤ 0.25 kg
Moment of inertia of the rotor	56 gcm ²
Operating speed	≤ 6,000 min ^{-1 1)}
Angular acceleration	≤ 500,000 rad/s²
Operating torque	0.6 Ncm (+20 °C)
Start up torque	+ 0.8 Ncm (+20 °C)
Permissible movement static	\pm 0.3 mm, \pm 0.5 mm radial, axial
Permissible movement dynamic	± 0.05 mm radial ± 0.1 mm axial
Life of ball bearings	3.6 x 10 ⁹ revolutions

 $^{^{1)}}$ Allow for self-heating of 3.3 K per 1,000 rpm when designing the operating temperature range.

Ambient data

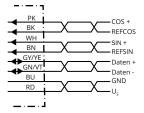
Operating temperature range	-30 °C +85 °C
Storage temperature range	-40 °C +90 °C, without package
Relative humidity/condensation	90 %, Condensation not permitted
Resistance to shocks	100 g, 6 ms (according to EN 60068-2-27)
Frequency range of resistance to vibrations	20 g, 10 Hz 2,000 Hz (EN 60068-2-6)
EMC	According to EN 61000-6-2 and EN 61000-6-3 1)
Enclosure rating	IP65, with mating connector inserted (IEC 60529)


¹⁾ The EMC according to the standards quoted is achieved when the motor feedback system is mounted in an electrically conductive housing, which is connected to the central earthing point of the motor controller via a cable screen. The GND-(0 V) connection of the supply voltage is also grounded here. If other shielding concepts are used, users must perform their own tests.

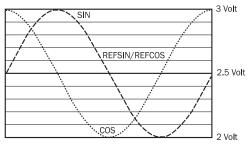
Classifications

ECLASS 5.0	27270590
ECLASS 5.1.4	27270590
ECLASS 6.0	27270590
ECLASS 6.2	27270590
ECLASS 7.0	27270590
ECLASS 8.0	27270590
ECLASS 8.1	27270590
ECLASS 9.0	27270590
ECLASS 10.0	27273805
ECLASS 11.0	27273901
ECLASS 12.0	27273901
ETIM 5.0	EC001486
ETIM 6.0	EC001486
ETIM 7.0	EC001486
ETIM 8.0	EC001486
UNSPSC 16.0901	41112113

Dimensional drawing (Dimensions in mm (inch))


Through hollow shaft - safety system

General tolerances according to DIN ISO 2768-mk


- ① Operating temperature measuring point (freely selectable, in each case circumferential at the housing surface, approx. 3 mm from the flange)
- ② Vibration measuring point (on the housing front face in each case, approx. 3 mm away from edge of housing)
- ③ Feather key groove
- ① Dimensional drawing of the stator coupling may differ depending on the variant. Please also refer to the dimensional drawing of the stator coupling.

PIN assignment

Diagrams

Signal specification of the process channel

Signal diagram for clockwise rotation of the shaft looking in direction "A" (see dimensional drawing)1 period = 360 °: 1024

Operation note

Charactersitics applicable to all permissible environmental conditions

Signal	Values/unit
Signal peak, peak V _{SS} of SIN, COS	0.9 V 1.1 V
Signal offset REFSIN, REFCOS	2.2 V 2.8 V

Model-specific settings

	SFS	SFM
Model ID (command 52h)	22h	27h
Free E ² PROM [bytes]	128/1.792	128/1.792
Address	40h	40h
Mode_485	E4h	E4h
Codes 0 to 3	55h	55h
Counter	0	0

SFS60S-HRKT0K02 | SFS/SFM60

MOTOR FEEDBACK SYSTEMS

Overview of supported commands for $\mathsf{HIPERFACE}^{\circledast}$

			SFS	SFM
Command byte	Function	Code 0 1)	Comment	Comment
42h	Read position			
43h	Set position			
44h	Read analog value		Channel number 48h	Channel number 48h
			Temperature [°C]	Temperature [°C]
46h	Read counter			
47h	Increase counter			
49h	Delete counter			
4Ah	Read data			
4Bh	Store data			
4Ch	Determine status of a data field			
4Dh	Create data field			
4Eh	Determine available memory area			
4Fh	Change access code			
50h	Read encoder status			
52h	Read out type label		Encoder type = 22h	Encoder type = 22h
53h	Encoder reset			
55h	Allocate encoder address			
56h	Read serial number and program version			
57h	Configure serial interface			

¹⁾ The commands thus marked include the parameter 'Code 0'. Code 0 is a byte inserted into the protocol to provide additional protection of vital system parameters against accidental overwriting. When the device is supplied, 'Code 0' = 55h.

Overview of status messages for HIPERFACE®

	Status code	Description	SFS	SFM
Error type	00h	The encoder has not detected any faults	-	-
Initialization	01h	Incorrect alignment data		
	02h	Incorrect internal angular offset		-
	03h	Data field partitioning table destroyed		•
	04h	Analog limit values not available	-	•
	05h	Internal I2C bus inoperative	-	•
	06h	Internal checksum error		•
Protocol	07h	Encoder reset occurred as a result of program monitoring		-
	09h	Parity error	-	-
	0Ah	Checksum of transmitted data is incorrect	-	-
	0Bh	Unknown command code		-
	0Ch	Number of transmitted data is incorrect		-
	0Dh	Transmitted command argument is not allowed		-
	0Eh	The selected data field may not be written to		-
	0Fh	Incorrect access code		•
Data	10h	Size of specified data field cannot be changed		•
	11h	Specified word address lies outside the data field	-	-
	12h	Access to non-existent data field		-
Position	01h	Analog signals outside specification		-
	1Fh	Speed too high, no position formation possible	-	-
	20h	Singleturn position unreliable		-
	21h	Multiturn position error		-
	22h	Multiturn position error		-
	23h	Multiturn position error		-
	1Ch	Value monitoring of the analog signals (process data)	•	-
Other	1Dh	Transmitter current critical (contamination, transmitter breakage)	•	•
	1Eh	Encoder temperature critical	-	•
	08h	Counter overflow	•	•

For more information on the interface see HIPERFACE® - description, part no. 8010701

Recommended accessories

Other models and accessories → www.sick.com/SFS_SFM60

	Brief description	Туре	Part no.			
Programming and configuration tools						
[00.10]	SVip® LAN programming tool for all motor feedback systems	PGT-11-S LAN	1057324			
Flanges						
	One-sided stator coupling, slot, slot radius 32.25 mm to 141.75 mm, slot width 5.1 mm	BEF-DS02DFS/VFS	2047430			
	Stator coupling with hole circle diameter Ø72 mm	BEF-DS07XFX	2059368			

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations -www.sick.com

