
Rotaring indexing table

DHTG

FESTO

en Operating instructions

8085860 2018-02e [8085862]

Translation of the original instructions DHTG-FN

Identification of hazards and instructions on how to prevent them:

Danger

Immediate dangers which can lead to death or serious injuries

Warning

Hazards that can cause death or serious injuries

Caution

Hazards that can cause minor injuries

Other symbols:

Note

Material damage or loss of function

Recommendations, tips, references to other documentation

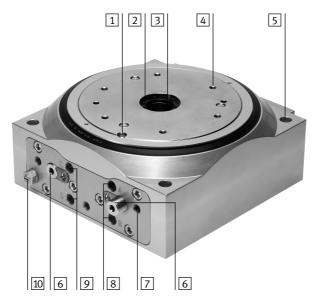
Essential or useful accessories

Information on environmentally sound usage

Text designations:

- · Activities that may be carried out in any order
- 1. Activities that should be carried out in the order stated
- General lists
- → Result of an action/References to more detailed information

English – Rotaring indexing table DHTG


Table of contents

1	Operating elements and connections	4
2	Function and application	5
3	Transport and storage	5
4	Requirements for product use	5
5	Installation	6
5.1	Mechanical assembly	6
5.2	Installing the pneumatic system	7
5.3	Electrical installation	9
6	Commissioning	10
7	Operation	12
8	Maintenance and care	13
9	Dismantling and repairs	14
10	Accessories	16
11	Troubleshooting	16
12	Technical data	17
13	Characteristic curves	18

1 Operating elements and connections

For all available product documentation → www.festo.com/pk

- 1 Retaining screw for table bearing
- Threaded and pin hole for adapter
- 3 Through hole for power supply
- Threaded and pin hole for plate
- 5 Centring/through hole and thread for fastening
- 6 Adjusting screw for setting the cushioning
- Fig. 1

- 7 Threaded hole for sensor for position sensing
- 8 Supply port A and B for clockwise/anti-clockwise rotation
- 9 Supply port C and D for reciprocating operation (sealed on delivery)
- 10 One-way flow control valve for speed regulation

2 Function and application

The DHTG rotary indexing table is a double-acting rotary drive based on the toothed rack and pinion principle with forced locking (as from size DHTG-140 also with overload protection). When the compressed air ports are pressurised alternately, two toothed rod pistons move backwards and forwards. By means of a pinion, the pistons convert the linear movement into a rotary movement. A second pair of pistons controls the engagement of the pinion in the table gearing and the locking of the holding position. The integrated shock absorber brakes the rotary indexing table in the direction of rotation.

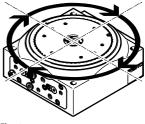


Fig. 2

The DHTG rotary indexing table is intended for turning the work load by a defined angle into a holding position.

3 Transport and storage

- Take the weight of the DHTG into consideration. It weighs up to 25 kg.
- Ensure the following storage conditions are met:
 - Short storage times and
 - Cool, dry, shaded, corrosion-resistant storage locations.

4 Requirements for product use

Note

Improper handling can result in malfunctions.

- Be sure to always comply with the specifications in this chapter.
- Compare the maximum values specified in these operating instructions with those of your actual
 application (e. g. forces, torques, temperatures, masses, speeds).
 Only compliance with the load limits allows operation of the product in compliance with the relevant
 safety regulations.
- Take into consideration the ambient conditions at the location of use.
 Corrosive environments reduce the service life of the DHTG.
- Ensure that there is a supply of correctly prepared compressed air.
- Maintain the selected medium for the complete service life of the product.
 Example: Always use non-lubricated compressed air.
- Pressurise your entire system slowly.
 This will prevent uncontrolled movements from occurring.
 For slow start-up pressurisation use safety start-up valve type HEL.
- Comply with the regulations of the trade association, the German Technical Control Board or relevant national regulations.

- Remove all transport packing such as foils, caps, cartons (except for any sealing elements in the
 pneumatic connections and holes for the proximity switches). The packing is intended for recycling
 (except for: oiled paper = other waste).
- Use the product in its original condition without any unauthorised modifications.
- Take the tolerance of the tightening torques into account. Unless otherwise specified, the tolerance is ±20 %.

5 Installation

5.1 Mechanical assembly

- Make sure there is sufficient space for the pneumatic connections, for conversion or for replacing the shock absorber.
- Fasten the DHTG with four screws and ZBH centring sleeves.
 Tightening torques → Tab. 1, Tab. 2.

Direct mounting from above					
Size		65	90	140	220
Screw		M4	M6	M6	M8
Recess for	[mm]	7	12	12	15
centring sleeve					
	[mm]	5	8	8	8
Tightening torque	[Nm]	2.9	9.9	9.9	24

Tab. 1

Tab. 2

Direct mounting from below					
Size		65	90	140	220
Screw		M5	M8	M8	M10
Recess for	[mm]	7	12	12	15
centring sleeve					
Tightening torque	[Nm]	5.9	24	24	47

Fasten the blank plate with 6 screws and 2 centring pins. After fitting, the 6 screw recesses can be sealed with the cover caps supplied (press in until flush).

Blank plate mounting					
Size		65	90	140	220
Screw		M4	M4	M6	M8
Locating hole	[mm]	4	4	5	6
for centring pin					
Depth locating hole	[mm]	5	8	8	8
for centring pin					
Tightening torque	[Nm]	2.9	2.9	9.9	24

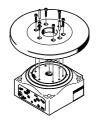
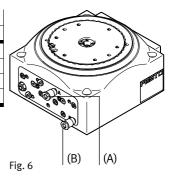


Fig. 5

Tab. 3


5.2 Installing the pneumatic system

• Connect the pneumatic ports A to D (if applicable remove sealing elements).

Clockwise or anti-clockwise rotation ¹⁾						
Size	65	90	140	220		
Connection A	Unlock	Unlock and turn				
Connection B	Lock an	Lock and return stroke				
Connecting thread	M5		G1/8			
Tightening torque	1.5 Nm		7 Nm			

¹⁾ Modification > 9 Dismantling and repairs

Tab. 4

Reciprocating operation ¹⁾					
Size	65	90	140	220	
Connection A	Unlock				
Connection B	Lock				
Connection C	Clockwise rotation ²⁾				
Connection D	Anti-clockwise rotation				
Connecting thread	M5		G1/8		
Tightening torque	1.5 Nm		7 Nm		

¹⁾ Separate kit required (Accessories → www.festo.com/catalogue)

Tab. 5

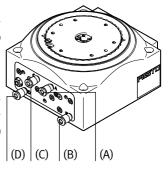
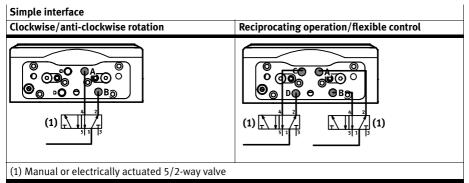



Fig. 7

²⁾ Use external flow control valve

As an example 4 interfaces are shown:

Tab. 6

Note

If used in safety relevant applications, additional measures are necessary, e. g. in Europe the standards listed under the EU machine guidelines must be observed. Without additional measures in accordance with statutory minimum requirements, the product is not suitable for use in safety-related sections of control systems.

- (1) Manual or electrically actuated 3/2-way valve
- (2) Single or double-solenoid 5/2-way valve
- (3) Non-return valve controlled

The compressed air is interrupted in the basic position of the valve (1). The air in the table is locked in and the movement stops. The speed at which the table comes to a stand depends on the mass moment of inertia and the angular velocity (division). It may therefore happen that the table moves into its end position but without additional tightening torque. The table can be moved by hand within a certain range.

Tab. 7

5.3 Electrical installation

If proximity switches are used for position sensing:

Note

Faulty switching or damage to the proximity switches due to being screwed in too far.

 Make sure the proximity switches are screwed into the thread (U), (V) or (W) up to the following maximum depth.

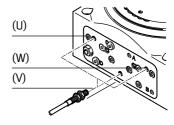


Fig. 8

Max. screw-in depth					
Size		65	90	140	220
Thread (U), (W)	[mm]	11.5	11.5	13.5	18.5
Thread (V)	[mm]	19.7	14	16	21

Tab. 8

• Screw the proximity switches into the following threaded holes:

Sensing	Direction of rotation of pla	Direction of rotation of plate			
	Clockwise rotation	Anti-clockwise rotation (reciprocating operation/ flexible control)			
Direction of rotation	(W)	(U)			
Locking mechanism	(V)	(V)			
Piston end position	(U)	(W)			

Tab. 9

When the DHTG is used with 3-part split (DHTG-140 and DHTG-220):

Note

Based on the design, the rotating plate can engage in an intermediate position (corresponding to the 6-index stations).

After an emergency stop / overload, make sure that the rotating plate is in the
desired position before the system is placed back in operation.
 If the rotating plate is engaged in an intermediate position, bring the locked rotating
plate into the desired position by jerking and twisting it against the overload
protection.

6 Commissioning

Warning

Risk of injury from rotating masses.

 Make sure nobody can place his/her hand in the positioning range of the DHTG and that no objects lie in its path (e. g. by providing a protective screen).

Note

Incorrect functioning due to inaccurate toothed rod position. When the DHTG is exhausted, the resetting force of the shock absorber can push the rotary table out of the end position and into an undefined position.

- Before each commissioning procedure, pressurise the last pressurised connection:
 - Connection (B) for clockwise/anti-clockwise rotation
 - Connection (C) or (D) for reciprocating operation/flexible control.

Note

Clockwise rotation is controlled internally through the flow control valve 10.

Reciprocating operation must be controlled externally through an additional one-way flow control valve GRLA, Connection (C), Fig. 10 (>> www.festo.com/catalogue).

- Screw the flow control screw 10:
 - in completely,
 - then loosen one rotation
- Slowly pressurise the complete system with at least 4 bar.
- Start a test run Tab. 10.
- Check in a test run at low pulse frequency whether the following modifications are necessary:
 - Readjustment of the proximity switches
 - Increase the speed step-by-step by unscrewing the flow-control screw 10
 - Set the cushioning.

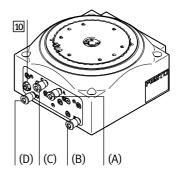


Fig. 10

Direction of rotation of plate				
Clockwise/anti-clockwise rotation	Reciprocating operation/flexible control ¹⁾			
Basic position: Connection (B) pressurised	→ see examples Tab. 11 to Tab. 13			
1. Slowly pressurise connection (A)				
2. Provide clock pulses for the valve				

¹⁾ Internal flow control in one direction only (if necessary throttle different direction externally)

Tab. 10

Examples for reciprocating operation/flexible control

Clockwise rotation	Reaction				
Basic position: Connection (B) and (D) pressurised					
1. Pressurise connection (A)	Unlock				
2. Pressurise connection (C)	Pulse right				
3. Pressurise connection (B)	Lock				
4. Pressurise connection (D) (continue with 1.)	Return stroke				

Tab. 11

Anti-clockwise rotation	Reaction			
Basic position: Connection (B) and (C) pressurised				
Pressurise connection (A)	Unlock			
2. Pressurise connection (D)	Pulse left			
3. Pressurise connection (B)	Lock			
4. Pressurise connection (C) (continue with 1.)	Return stroke			

Tab. 12

2 x clockwise and 2 x anti-clockwi	se rotation	Reaction			
Basic position: Connection (B) and	Basic position: Connection (B) and (D) pressurised				
1. Pressurise connection (A)		Unlock			
2. Pressurise connection (C)		Pulse right 1			
3. Pressurise connection (B)		Lock			
4. Pressurise connection (D)		Return stroke			
5. Pressurise connection (A)		Unlock			
6. Pressurise connection (C)		Pulse right 2			
7. Pressurise connection (B)		Lock			
Direction of rotation change					
8. Pressurise connection (A)		Unlock			
9. Pressurise connection (D)		Pulse left			
10. Pressurise connection (B)		Lock			
11. Pressurise connection (C)		Return stroke			
12. Pressurise connection (A)		Unlock			
13. Pressurise connection (D)		Return stroke			
14. Pressurise connection (B)	(continue with 1.)	Lock			

Tab. 13

- Note the maximum permitted frequencies as a factor of the moment of mass inertia (→ Technical specifications).
 - The rotary indexing table must **not** strike hard against the end stops and the overload protection must not be triggered.
- End the test run.

For setting the cushioning:

- Loosen the clamping element (K) one rotation.
- Screw in the adjusting screw 6 until the desired cushioning is achieved. The rotary indexing table must **not** strike hard against the end stops and the overload protection must not be triggered. The maximum moment of mass inertia must not be exceeded.

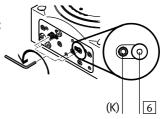


Fig. 11

Adjusting screw direction of rotation 6	Reaction
Clockwise ¹⁾	Cushioning is increased
Anti-clockwise	Cushioning is reduced

1) Screw in the adjusting screw until it is flush

Tab. 14

Tighten the clamping element (K) again.

Tightening torque					
Size		65	90	140	220
Width across flats		2.5	2.5	4	4
Tightening torque	[Nm]	0.8	0.8	2.5	2.5

Tab. 15

7 Operation

Warning

Risk of injury from rotating masses.

 Make sure nobody can place his/her hand in the positioning range of the DHTG and that no objects lie in its path (e. g. by providing a protective screen).

- Note the moment of mass inertia as a factor of the switching or cycle frequency (→ Characteristic curves).
 - The maximum achievable switching frequency as a factor of the moment of mass inertia can be read in the diagram **Switching frequency**. The switching time can be calculated from this by T = 60/f. The response time comprises: **Switching time** = unlocking, turning, locking and the return stroke of the work piston.

The maximum achievable cycle frequency as a factor of the moment of mass inertia can be read
in the diagram Cycle frequency. The minimum possible cycle time can be calculated from this
by T = 60/f.

The actual cycle time is then calculated as follows:

Cycle time = switching time + processing time + dwell time.

- The processing time results from the time which the relevant customer application requires (e. g. time for removing components, press-in time, etc).
- Dwell time may be necessary if the actual cycle time is less than the minimum possible cycle time (calculation example → Catalogue specifications).
- Note that the viscosity of the shock absorber oil decreases with increasing heat. The shock absorber might therefore strike through if the device is operated for too long a period. If necessary reduce the moment of mass inertia.
- Avoid the DHTG coming into contact with:
 - Aggressive media
 - Grinding dust
 - Glowing sparks or chips.
 These will damage the DHTG.

8 Maintenance and care

- Switch off the power supplies:
 - Operating voltage
 - Compressed air supply.

Cleaning:

Only clean the DHTG using a soft cloth.

All non-abrasive cleaning agents are permitted.

Due to its service life lubrication the DHTG does not require any maintenance.

Regular removal of the lubricating grease on the surface of the piston rod will reduce the service life.

- After a conversion (e. g. to reciprocating operation) lubricate the following components with LUB-E1:
 - piston, piston chamber, seal, lock, toothed rod, pinion, table bearing, dividing disc.

We recommend the mechanical components are lubricated again after every 5 million switching cycles.

- Check the shock absorbers every 2 million strokes for:
 - Oil leakage
 - Hard knocking
 - Function (shock absorber head must not remain in the retracted end position).

Dismantling the shock absorber (Dismantling and repairs).

- Replace the shock absorber when it shows one of the following signs of wear, or every 10 million strokes at the latest.
- Check whether lubrication/testing must be carried out more frequently.

This may be necessary in case of:

- High temperatures
- Excessive dirt
- Fat solvent fluids or fumes in the vicinity.

9 Dismantling and repairs

- Recommendation: Return the product to our repair service for overhaul.
 The necessary fine adjustments and tests will then be taken into account.
- Information about spare parts and aids can be found at: www.festo.com/spareparts
- Switch off the power supplies:
 - Operating voltage
 - Compressed air
- Exhaust the system and the product.

Replacing the integrated shock absorber:

- 1. Unscrew the flow-control screw 10.
- 2. Unscrew the fastening screws (M) on the sub-base.
- 3. Using pliers, remove the retaining ring on the shock absorber.
- 4. Replace the shock absorber.
- 5. Fit the individual parts again in reverse sequence (tightening torque → Tab. 16).

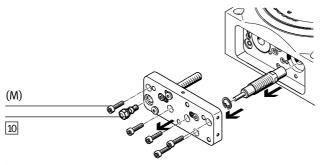


Fig. 13

Tightening torque					
Size		65	90	140	220
Flow control screw 10	[Nm]	1.5	1.5	5.5	5.5
Fastening screws (M)	[Nm]	2.9	2.9	9.9	9.9

Tab. 16

Conversion from clockwise rotation (as supplied) to anti-clockwise rotation:

- 1. Loosen the clamping element (K) of the adjusting screw one rotation.
- 2. Unscrew the adjusting screw 6 a few rotations.
- 3. Unscrew flow control screw 10 and the fastening screws (M) from the sub-base.
- 4. Using pliers, remove the retaining ring (S) on the shock absorber.
- 5. Fit the following:
 - the shock absorber with the retaining ring in the adjacent hole
 - the O-ring (P) / buffer (for DHTG-65) in the adjacent groove
 - the distance piece (T) in the same hole (distance piece omitted for 2/3 index stations)
 - the sub-base with the fastening screws and the flow control screw in reverse sequence (tightening torque → Tab. 17).
- 6. Unscrew the fastening screws (N) on the stop plate.
- 7. Unscrew:
 - both locking screws (0) on the rear of the stop plate to begin with,
 - then screw them in again into the open holes (tightening torque → Tab. 17).
 The open holes (R) or (L) in Fig. 14 determine the direction of rotation (Holes (R) open: clockwise rotation).
- 8. Screw the fastening screws (N) on the stop plate again (tightening torque → Tab. 17). The rotary indexing table remains pneumatically controlled as before.
- 9. Screw in the adjusting screw 6 until the desired cushioning is achieved → Fig. 11.
- 10. Tighten the clamping element (K) of the adjusting screw (tightening torque \rightarrow Tab. 15).

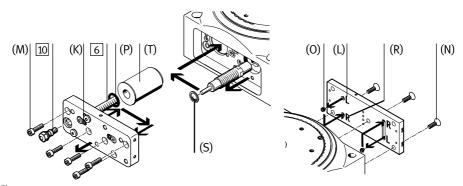


Fig. 14

Tightening torque						
Size		65	90	140	220	
Flow control screw 10	[Nm]	1.5	1.5	5.5	5.5	
Fastening screws (M)	[Nm]	2.9	2.9	9.9	9.9	
Plug screw (0)	[Nm]	0.5				
Fastening screws (N)	[Nm]	1.5	2.9	5.9	5.9	

Tab. 17

10 Accessories

Note

- Please select the appropriate accessories from our catalogue
 - → www.festo.com/catalogue

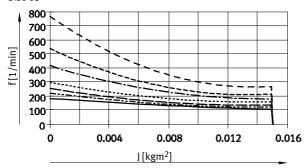
11 Troubleshooting

Malfunction	Possible cause	Remedy
Rotating plate does not	Overload protection is active	Pressurise connection (B) and turn
move		the plate back against the direction
		of rotation as far as possible. Doing
		this causes the overload protection
		and the locking mechanism, if
		applicable, to engage audibly
	Audible leakage	Send DHTG to Festo
	Flow-control screw closed	Open screw
	completely	
Rotating plate does not	End position not reached	Unscrew the adjusting screw for the
engage		shock absorber until the rotating
		plate engages
	Overload protection is active	→ see above
	Toothed disc and pinion stand tooth	Please contact Festo's Technical
	on tooth	Hotline
Hard metal impact at	Adjusting screw for shock absorber	Screw in adjusting screw
the end position	unscrewed too far	
	Shock absorber defective	Replace shock absorber
		(→ 9 Dismantling and repairs)
Hard metallic knocking	Adjusting screw for shock absorber	Unscrew adjusting screw
in the locking	screwed in too far (e. g. when	
mechanism	changing the direction of rotation)	
Plate position incorrect	Overload protection engaged	Force overload protection and turn
	incorrectly at 180° (plate offset 30°)	until it re-engages

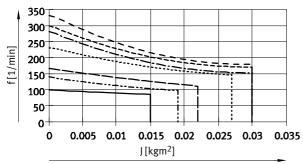
Tab. 18

12 Technical data

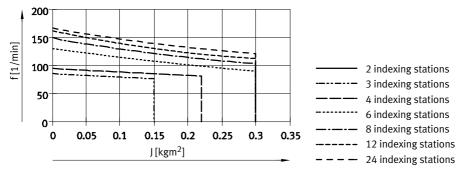
Size		65	90	140	220	
Operating mode	Double-acting double piston mode					
Mounting position	Any					
Position sensing		For inductive proximity sensors				
Cushioning		,	shock absor			
Operating medium			d air accordi :2010 [7:4:4	J		
Operating pressure	[bar]	48				
Pneumatic connection		M5		G1/8		
Max. axial force F	[N]	1000	2000	4000	5000	
Max. radial force R	[N]	2000	5000	6000	8000	
Max. tilting torque M	[Nm]	100	150	300	500	
Max. tangential torque T	[Nm]	100	150	200	500	
Max. mass moment of inertia with flow control screw opened completely (→ 7 Opera-	[kgm ²]	0.015	0.03	0.3	2.5	
tion, → 13 Characteristic curves)						
Theor. torque at 6 bar	[Nm]	2.1	4.4	18.1	58.9	
Parallelism of plate ¹⁾	[mm]	≤ 0.04				
Axial eccentricity of plate ²⁾	[mm]	≤ 0.02				
Concentricity of plate ³⁾	[mm]	≤ 0.02				
Repetition accuracy of swivel angle	[°]	≤ 0.03				
Replacement accuracy	[mm]	< 0.2				
Ambient temperature	[°C]	+5 +60				
Storage temperature	-20 +80					
Protection class		IP54				
Material						
Cover, housing		Wrought aluminium alloy				
Stops, plate		Galvanised steel				
Seals		Nitrile rubber, polyurethane				
Note on materials	Free of copper and PTFE					
Product weight	[kg]	1.9	4.5	10	24	

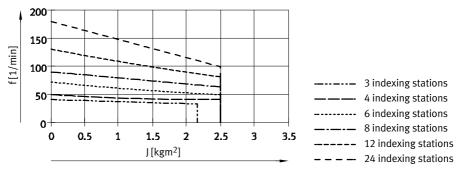

- 1) Parallelism of the plate surface relative to the housing support
- 2) Measured on the surface of the plate at the edge of the plate in relation to the housing support
- 3) Measured on the inner diameter of the plate in relation to the housing

Tab. 19

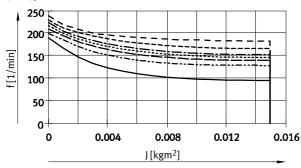

13 Characteristic curves

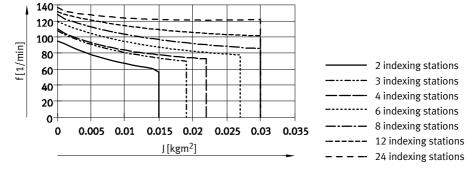
Switching frequency f as a function of mass moment of inertia J


Size 65



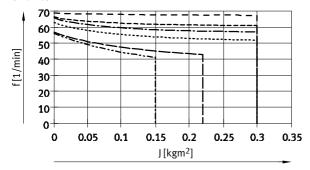
Size 140


Switching frequency f as a function of mass moment of inertia J

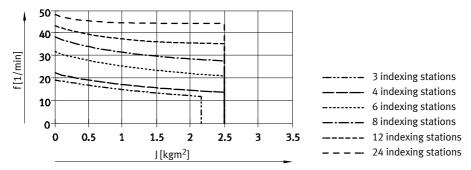


Max. permissible cycle frequency f as a function of mass moment of inertia J

Size 65



Size 90



Max. permissible cycle frequency f as a function of mass moment of inertia J

Size 140

Size 220

DHTG

Copyright: Festo SE & Co. KG Ruiter Straße 82 73734 Esslingen Germany

Phone: +49 711 347-0

Fax: +49 711 347-2144

Reproduction, distribution or sale of this document or communication of its contents to others without express authorization is prohibited. Offenders will be liable for damages. All rights reserved in the event that a patent, utility model or design patent is registered.

E-mail: service_international@festo.com

Internet: www.festo.com