EPCC-BS Electric cylinder

•

Operating instructions

8172502 2022-03c [8172504]

FESTO

Deutschland

+49 711 347-0

www.festo.com

Festo SE & Co. KG

Ruiter Straße 82 73734 Esslingen

Translation of the original instructions

 $\ensuremath{\mathbb C}$ 2022 all rights reserved to Festo SE & Co. KG

1 Applicable Documents

Ωì

All available documents for the product \rightarrow www.festo.com/sp.

2 Safety

2.1 Safety instructions

- Observe labelling on the product.
- Before working on the product, switch off the power supply and secure it against being switched on again.
- Store the product in a cool, dry environment protected from UV and corrosion. Keep storage times short.
- Store the product in ambient conditions without oils, greases and grease-dissolving vapours.

2.2 Intended Use

The electric cylinder is intended to be used for positioning payloads in combination with tools or as a drive when external guides are used.

2.3 Training of qualified personnel

Work on the product may only be carried out by qualified personnel who can evaluate the work and detect dangers. The qualified personnel have knowledge and experience in dealing with electric drive systems.

3 Additional information

− Contact the regional Festo contact if you have technical problems
 → www.festo.com.

Accessories and spare parts → www.festo.com/catalogue.

4 Product overview

4.1 Function

The electric cylinder converts the rotary motion of the mounted motor into a linear motion of the non-rotating piston rod. The lead screw converts the torque of the motor into a feed force. The linear movement of the piston rod is guided by the guide in the guide ring. Sensors enable the monitoring of end positions, reference position and intermediate position.

4.2 Product design

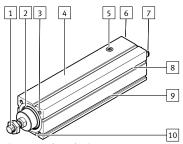


Fig. 1: Product design EPCC-BS, example EPCC-BS-45-100-10P-A7-A

- 1 Piston rod with male thread or female thread
- 2 Guide ring with or without scraper
- 3 Threaded hole for mounting
- 4 Cylinder profile
- 5 Sealing air connection with filter element
- 6 Interface for motor mounting kit 7 Drive hub
- 8 Slot for sensor bracket
- 9 Slot for profile mounting
- 10 Slot for slot nut

5 Transport

NOTICE

Unexpected and unbraked movement of components

Secure moving components for transport.

WARNING

Risk of injury due to falling product

- If the product is lifted incorrectly, it may fall and cut, crush or separate body parts.
- Lift the product only with suitable load-bearing equipment.
- Store and transport the product in its original packaging. Observe the weight, the dimensions and the ambient conditions.
- Take the centre of gravity of the product into consideration.
- Store and transport the product in a horizontal position.

6 Assembly

6.1 Safety

WARNING

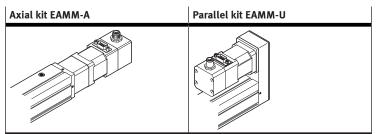
Risk of Injury due to Unexpected Movement of Components

For vertical or slanted mounting position: when power is off, moving parts can travel or fall uncontrolled into the lower end position.

 Bring moving parts of the product into a safe end position or secure them against falling.

6.2 Unpacking product

- 1. Open packaging.
- 2. Remove all transport materials, e.g. foils, caps, cardboard boxes.
- 3. Remove the product from the packaging and place it on the mounting surface.
- 4. Dispose of packaging and transport materials.


6.3

i

Transverse load on the drive hub

Mounting motor

When mounting the motor and motor mounting kit, do not exceed the maximum transverse load F_R of the drive hub, e.g. toothed belt tension when mounting the parallel kit \rightarrow 12.1 Technical data, mechanical.

Tab. 1: Overview of motor mountings

Requirement

- Only loosen screws or threaded pins that are described in the directions in the instruction manuals.
- Sufficient space for reaching and mounting the sealing air connection .
- Select the motor and motor mounting kit from Festo→ www.festo.com/catalogue. If other motors are used: observe the critical limits for forces, torques and velocities.
- Fasten motor mounting kit, observe instruction manual → www.festo.com/sp.
- 3. Fasten the motor without tension. Support large and heavy motors.
- Connect motor cables only on completion of mounting.

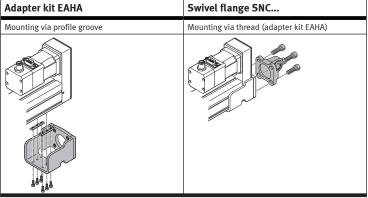
6.4 Mounting cylinder

i

High mechanical loads on the mounting connections

If high parallel torques are applied to the drive system at the same time, this will result in high mechanical loads at the mounting interfaces.

 If the mounting position is inclined or horizontal with direct fastening, the drive system will require additional support near the motor mounting.


Requirement

- No collision in the range of motion of the attachment component with motor, mounting components and sensor components.
- Sufficient space to reach maintenance interfaces.
- Sufficient space for reaching and mounting the sealing air connection.
- Flat mounting surface maximum 0.2 mm over the stroke length of the bearing surface.
- No distortion or bending when installing the product.
 - 1. Select mounting attachments → www.festo.com/catalogue.
 - 2. Place the mounting attachments on the support points.
 - 3. Tighten retaining screws.

Observe the maximum tightening torque and screw-in depth. For additional information, contact your local Festo Service.

Direct fastening	Profile mounting	Flange mounting	Swivel mounting
	EAHF-L2	EAHH	EAHS
Mounting via thread	Mounting via profile	Mounting via profile	Mounting via profile
	groove	groove	groove
Sarah and a sarah a sa Sarah a sarah a			ada ada

Tab. 2: Overview of mounting components for profile

Tab. 3: Overview of mounting components for parallel kit

Size		25	32	45	60	
Direct fastening						
Screw		-	M4	M5	M6	
Max. screw-in depth t _{max}	[mm]	_	8	10	12	
Max. tightening torque	[Nm]	-	3	4	5	
Adapter kit EAHA Flange mounting EAHH Profile mounting EAHF-L2 Swivel mounting EAHS Swivel flange SNC						
Screw		Instruction m	anual 🗲 www.	festo.com/sp		

6.5 Mounting attachment component

i

Torque on the Piston Rod

During commissioning and operation, the piston rod may only be operated without torque.

If external torques occur, an external guide must be used.

i

Mounting the attachment component on the piston rod

When mounting the attachment component, do not exceed the maximum torque of the piston rod. The maximum torque of the piston rod may only be used for a short time during mounting → Tab. 7 Information on attachment components.

Tab. 5: Requirement for attachment components

Requirement:

- No collision in the range of motion of the attachment component with motor, mounting components and sensor components.
- No transverse load or torque on the piston rod.
- Absorb external forces and torques by an external guide.
- Minimise guide load. Short lever arms from the piston rod thread 🕒 to the
- force application points and centre of gravity of the add-on elements.
- Select accessories → www.festo.com/catalogue. 1.
- Screw the lock nut onto the male thread of the piston rod or attachment 2. component.

- 3. Rotate or place the attachment component on the piston rod.
- 4. Tighten lock nut.
 - The tightening torque must not act on the piston rod. Counterhold with a suitable tool on the spanner flat of the piston rod. Observe maximum tightening torque.

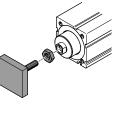


Fig. 2: Torque-free mounting

When using an additional external guide, ensure that the electric cylinder and piston rod are aligned exactly parallel.

EPCC-BS	EPCC-BSF
Mounting via male thread	Mounting via female thread
with nut	with screw
with lock nut	

Rod clevis SG. CRSG

Coupling piece KSG Self-aligning rod coupler FK; CRFK

Tab. 6: Overview of attachment components

Size	25	32	45	60		
Piston rod						
Spanner size = C [mm]	7	9	10	13		
Max. torque [Nm]	0.5	1	2	3		
Piston rod with male thread EPCC-BS						
Nut, lock nut	M6	M8	M10x1.25	M12x1.25		
Piston rod with female thread EPCC-BS	F					
Screw, lock nut	M4	M6	M8	M10		
Max. screw-in depth t _{max} [mm]	10	12	14	16		

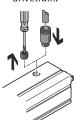
Tab. 7: Information on attachment components

6.6 Mounting accessories

Requirement

- No collision with mounting and sensor components in the movement space of the attachment component.
- Function
- Protection against uncontrolled overtravel of the end positions. _
- Referencing to reference switch or end position.
- Query of end positions or intermediate positions.
- _ Prevention of hard impacts at the end positions.
- Prevention of contamination in the slots.
- 1. Select accessories → www.festo.com/catalogue.
- 2. Mount the sensor (reference or query):
 - Mount sensor rail or mounting kit.
 - Align sensor and mount it at the switching position.
 - Fasten cable.

Instruction manuals → www.festo.com/sp.


Mounting via profile groove Protect the sensor from external magnetic or ferritic influences, e.g. min. 10 mm distance to slot nuts. Preferably use hardware limit switches with N/C contact function to guarantee protection in the event of a sensor failure. Instruction manual → www.festo.com/sp

Tab. 8: Overview of sensor mountings

Connecting sealing air

The use of sealing air at approx. \pm 0.02 MPa (\pm 0.2 bar, \pm 2.9 psi) reduces or prevents subsequent contamination:

- The application of negative pressure minimises the release of abraded particles into the environment.
- The application of overpressure reduces the penetration of dirt into the drivetrain.

Fig. 3: Mounting fitting

1. Remove the filter element from the threaded hole.

2. Mount the screw fitting and connect the hose.

Size		25	32	45	60
Thread		M5	M5	G1/8	G1/4
Max. screw-in depth	[mm]	4	5	7	7
Max. tightening torque	[Nm]	1.4	1.4	5	8

Tab. 9: Information on sealing air connection

7 Commissioning

7.1 Safety

WARNING

Risk of injury due to unexpected movement of components.

- Protect the positioning range from unwanted intervention.
- Keep foreign objects out of the positioning range.
- Perform commissioning with low dynamic response.

7.2 Commissioning procedure

i

Block-shaped acceleration profiles without jerk limitation can have the following effects:

- High mechanical loads on the lead screw due to high force peaks.
- Overshooting effects during positioning.

• Rise of the entire system.

Recommendation: reduce high force peaks in the acceleration and deceleration phases by using the jerk limitation.

i

When the motor is removed, the motor encoder loses its absolute reference to the reference mark, e.g. by turning the motor drive shaft.

• Carry out a homing run every time the motor is mounted in order to establish the absolute reference between the motor encoder and the reference mark.

i

Torque on the Piston Rod

During commissioning and operation, the piston rod may only be operated without torque.

If external torques occur, an external guide must be used.

i

Running noises during operation

Identically constructed axes can generate different running noises depending on the parameterisation, mode of operation, type of mounting, installation environment and components.

i

For use with reduced particle emission

Clean product → 9.2 Cleaning.

Requirement

- Mounting of the drive system is checked.
- Installation and wiring of the motor is checked.
- No foreign objects in the movement space of the drive system.
- Maximum permissible feed force and drive torque not exceeded as a function of acceleration, deceleration (e.g. stop function, quick stop), velocity, moving mass and mounting position.
- Cylinder not mechanically overloaded and dynamic setpoint deviation not exceeded due to force peaks and torque peaks or overshoot effects, e.g. overrunning the end position.
 Limit overloads and overruns by jerk limitation, reduced acceleration and decel-

eration setpoints or optimised controller settings.

- Control run and homing with reduced setpoint values for speed, acceleration and deceleration.
- No test run to mechanical end stops.
- Software end positions \geq 0.25 mm away from the mechanical stops.

Steps	Purpose	Note
1. Check travel	Determine the direc- tion of travel of the piston rod	 Direction of movement of piston rod, clockwise spindle: Retracting: rotate drive shaft clockwise. Advancing: rotate drive shaft anti-clockwise. The direction of movement of the piston rod for positive and negative position values depends on the mounting position of the motor on the cylinder, e.g. parallel or axia kit. Set a required reversal of direction of rotation via parameters in the servo drive or controller.
2. Homing	Determination of the reference point and adjustment of the dimensional ref- erence system - during the initial start-up proce- dure - after replacement of the motor	Permissible reference points: - towards reference switch: Travel at reduced velocity → 12 Technical data. - towards end position: do not exceed maximum values → Tab. 11 Speed and energy at the end positions. Additional information → Instruction manual of the drive system, → www.festo.com/sp.
3. Test run	Checking the oper- ating conditions	Check application requirements: – Piston rod runs through the complete travel cycle in the specified time. – The piston rod stops travel when a limit switch or soft- ware end position is reached.

Tab. 10: Commissioning steps

Size		25	32	45	60
Max. stop velocity	[m/s]	0.01			
Max. stop energy	[mJ]	1.2	3.6	12	24
Calculation of the maximum stop energy					
$E_{max} = \frac{v^2}{2} \left(m + \frac{J_R}{J_L} \right)$		 y v = max. stop velocity m = mass of all linear moving components J_R = mass moment of inertia of all rotating connents J_L = mass moment of inertia per kg payload Additional information → www.festo.com/catale 			

Tab. 11: Speed and energy at the end positions

Operation

WARNING

Risk of injury due to unexpected movement of components.

- Protect the positioning range from unwanted intervention.
- Keep foreign objects out of the positioning range.
- Perform commissioning with low dynamic response.

i

8

Torque on the Piston Rod

During commissioning and operation, the piston rod may only be operated without torque.

If external torques occur, an external guide must be used.

i

Lubrication run during operation

Observe the following lubrication travel intervals.

• With working stroke less than 2 x spindle pitch... P:

 Perform a lubrication run within 10 travel cycles with a minimum stroke of ≥ 2 x spindle pitch.

9 Maintenance

9.1 Safety

WARNING

Unexpected movement of components.

Injury due to impacts or crushing.

• Before working on the product, switch off the control and secure it to prevent it from being switched back on accidentally.

9.2 Cleaning

- If the piston rod is dirty, clean it with a clean, soft and lint-free cloth without cleaning agents and then apply the lubricant thinly to the piston rod.
- Clean the other product components with a clean, soft cloth and non-abrasive cleaning agents.

For use with reduced particle emission:

- Remove abrasion and contamination from the product on the following schedule:
 - Prior to initial commissioning.
 - Regularly during operation.

9.3 Lubrication

Lubrication interval and accessories

Lubrication	Lead screw	Piston rod
Lubrication interval	Lubrication for life	If required, e.g. if the grease layer is too low.
Accessories	•	
Lubrication point	-	Surface
Lubricant	-	ELKALUB VP 922, Chemie- Technik, Vöhringen

Tab. 12: Overview of lubrication intervals and accessories

10 Malfunctions

10.1 Fault clearance

Unexpected movement of components.

Injury due to impacts or crushing.

• Before working on the product, switch off the control and secure it to prevent it from being switched back on accidentally.

WARNING

Risk of injury due to unexpected movement of components.

- Protect the positioning range from unwanted intervention.
- Keep foreign objects out of the positioning range.
- Perform commissioning with low dynamic response.

Malfunction	Possible cause	Remedy
Loud running noises or vibrations or rough running of the cylinder	Coupling distance too short	Observe permissible coupling spacings → Instruction manual for motor mounting kit, → www.festo.com/sp.
	Torsional stresses	 Install the cylinder free of tension. Make sure that the contact surface is flat → 6.4 Mounting cylinder. Change the layout of the attachment component, e.g. payload. Align cylinder and attached guide element parallel to each other. Use external guide.
	Current controller set- tings	Optimise controller values, e.g. velocity, acceler- ation, etc.
	Resonant vibration of the cylinder	Change the travel velocity.
	Wear on bearing or drive screw	 Contact local Festo Service. Replace cylinder → www.festo.com/catalogue.
	Insufficient lubrication of the piston rod	Lubricate piston rod \rightarrow 9.3 Lubrication.
Vibration at the piston rod	Operation at the reso- nance point of the cyl- inder	 Change the travel velocity. Change the acceleration. Increase cylinder stiffness, e.g. shorter support distances. Change the payload geometry.
Long oscillations of the profile	Resonant frequency of profile and payload too low.	 Increase cylinder stiffness, e.g. shorter support distances. Change the payload geometry.
Piston rod does not move	Coupling slips	Check the mounting of the shaft-hub connection → Instruction manual of the motor mounting kit, → www.festo.com/sp.
	Loads too high	Reduce forces and torques. Consider dynamics.
	Threaded drive blocked	 Contact local Festo Service. Replace cylinder → www.festo.com/catalogue.
	Pre-tension of toothed belt too high in parallel kit	Reduce the pre-tension of the toothed belt → Instruction manual for parallel kit, → www.festo.com/sp.
	Operation at the lower ambient temperature limit	 Optimise controller data, e.g. velocity, acceleration, Use gear unit.
	Piston rod jammed at the mechanical end position	Manually releasing a jam: - Switch off the controller and lock it to prevent it from being switched on again unintention- ally. - Remove motor and motor mounting kit. - Rotate drive shaft freely.
Overruns the end posi- tion	Sensor does not switch	Check sensor, installation and parameterisation.

Malfunction	Possible cause	Remedy
Position sensing not reproducible	Sensor switches sev- eral times	- Contact local Festo Service.
Idling torque too high	Wear in the drivetrain	 Contact local Festo Service. Replace cylinder → www.festo.com/catalogue.

Tab. 13: Overview of fault clearance

11 Demounting

WARNING

Unexpected movement of components

Injury due to impact or crushing.

Before working on the product: secure the slide to prevent unintentional movement.

WARNING

Risk of Injury due to Unexpected Movement of Components

For vertical or slanted mounting position: when power is off, moving parts can travel or fall uncontrolled into the lower end position.

• Bring moving parts of the product into a safe end position or secure them against falling.

1. Disconnect electrical installations.

- 2. Remove the mounted attachment component.
- 3. Remove the mounted accessories.
- 4. Remove motor and mounting kit.
- 5. Remove mounting attachments.
- 6. Observe transport information \rightarrow 5 Transport.

12 Technical data

12.1 Technical data, mechanical

i

Use the Festo sizing software for sizing the drive → www.festo.com/sp.

Additional information → www.festo.com/catalogue.

EPCC-BS-25/32

Size		25		32			
Spindle pitch		2P	6P	3P	8P		
Design		Electric cy	Electric cylinder with ball screw				
Guide		Plain-bea	ring guide				
Mounting position		any					
Max. feed force F _x	[N]	75		150			
Max. driving torque	[Nm]	0.05	0.1	0.15	0.3		
No-load driving torque	[Nm]	0.02	0.055	0.065	0.095		
Max. rotational speed	[rpm]	4000	•	3750	•		
Max. velocity	[m/s]	0.133	0.4	0.188	0.5		
		→ 12.2 C	haracteristic cu	rves			
Max. acceleration	[m/s ²]	5	15	5	15		
Repetition accuracy	[mm]	± 0.02					
Feed constant	[mm/ rev]	2	6	3	8		
Duty cycle	[%]	100					
Relative humidity	[%]	0 95 (n	0 95 (non-condensing)				
Ambient temperature	[°C]	0 +60	0+60				
Storage temperature	[°C]	-20 +60)				
Degree of protection		IP40					
Max. permissible force on t	he drive hub						
Max. transverse load F_R	[N]	30		75			
Max. permitted forces, torq	ues and torsi	onal backlas	sh on the pistor	ı rod			
Max. torsional backlash	[°]	± 1					
Fx	[N]	75		150	150		
Fy	[N]	→ 12.2 C	→ 12.2 Characteristic curves				
Fz	[N]	→ 12.2 C	haracteristic cu	rves			
Mx	[Nm]	0		0			
My	[Nm]	0.6		1.5			
Mz	[Nm]	0.6		1.5			
Calculating the load compa	rison factor						

Size	25		32	
Spindle pitch	2P	6P	3P	8P
fv	$f_v = \frac{ F_{y,dyn} }{F_{y,max}} +$	$\frac{\left F_{z,dyn}\right }{F_{z,max}} + \frac{\left M_{x,dyr}\right }{M_{x,max}}$		$\left \frac{z_{,dyn}}{z_{,max}}\right \le 1$
	FX MX	Control for the second		

Tab. 14: General data, EPCC-BS-25/32

EPCC-BS-45/60

Size		45		60		
Spindle pitch		3P	10P	5P	12P	
Design		Electric cylinder with ball screw				
Guide		Plain-bearing guide				
Mounting position		any				
Max. feed force F _x	[N]	450 1000				
Max. driving torque	[Nm]	0.4	0.9	1.2	2.4	
No-load driving torque	[Nm]	0.08	0.16	0.235	0.325	
Max. rotational speed	[rpm]	3600		3000		
Max. velocity	[m/s]	0.18	0.6	0.25	0.6	
Max. acceleration	[m/s ²]	5	15	5	15	
Repetition accuracy	[mm]	± 0.02				
Feed constant	[mm/ rev]	3	10	5	12	
Duty cycle	[%]	100				
Relative humidity	[%]	0 95 (non-condensing)				
Ambient temperature	[°C]	0+60				
Storage temperature	[°C]	-20 +60				
Degree of protection		IP40				
Max. permissible force on the	drive hub					
Max. transverse load F_R	[N]	180 230		230		
Max. permitted forces, torque	es and torsio	onal backlash o	n the piston ro	d		
Max. rotation angle	[°]	± 1	±1			
Fx	[N]	450		1000		
Fy	[N]	➔ 12.2 Characteristic curves				
Fz	[N]	→ 12.2 Characteristic curves				
Mx	[Nm]	0		0		
My	[Nm]	2.9		6.4		
Mz	[Nm]	2.9		6.4		
Calculating the load comparis	on factor					
fv		$f_v \ = \ \frac{ F_{y,dyn} }{F_{y,max}} + \frac{ F_{z,dyn} }{F_{z,max}} + \frac{ M_{x,dyn} }{H_{x,max}} + \frac{ M_{y,dyn} }{M_{y,max}} + \frac{ M_{z,dyn} }{M_{z,max}} \ \le \ 1$				
		FX MX MV				

Tab. 15: General data, EPCC-BS-45/60

EPCC-BS-25/32/45/60

Size		25	32	45	60			
Materials								
Cylinder barrel		Anodised aluminium						
Piston rod		High-alloy steel						
Spindle		Bearing steel						
Spindle nut		Bearing steel						
Weight								
Basic weight at 0 mm stroke [kg]	0.132	0.225	0.555	1.114			
Added weight per 10 mm [stroke	kg]	0.013	0.024	0.041	0.069			

Tab. 16: Materials and weight

12.2 **Characteristic curves**

Additional information \rightarrow www.festo.com/catalogue.

Transverse load of piston rod EPCC-BS

Maximum transverse load Fy, Fz on the piston rod as a function of the piston rod length l

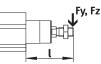


Fig. 4: Maximum transverse load Fy, Fz and piston rod length l

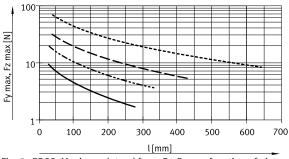


Fig. 5: EPCC, Maximum lateral force Fy, Fz as a function of piston rod length l

EPCC-BS-25	EPCC-BS-45
—— EPCC-BS-32	EPCC-BS-60

E	EPCC-BS-6	60
---	-----------	----

Feed speed – piston rod length EPCC-BS

Maximum feed velocity v as a function of stroke length l

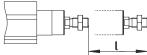
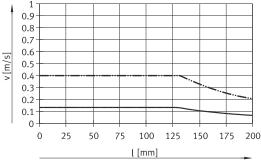
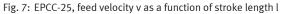
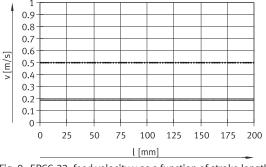
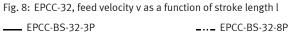
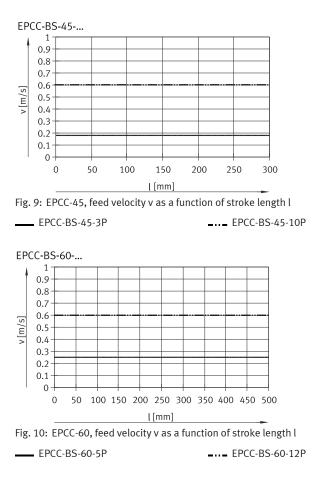




Fig. 6: Stroke length l







EPCC-BS-25-2P

